On the definition of multi-Koszul modules

In [8] we introduced the notion of multi-Koszul algebra: it is an extension of the definition of generalized Koszul algebra given by R. Berger in [1] for homogeneous algebras (see also [7]) that can be applied to any nonnegatively graded connected algebra over a field k. The goal of this article is...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Herscovich, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04990caa a22004937a 4500
001 PAPER-17045
003 AR-BaUEN
005 20230518204809.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85044849133 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JALGA 
100 1 |a Herscovich, E. 
245 1 3 |a On the definition of multi-Koszul modules 
260 |b Academic Press Inc.  |c 2018 
270 1 0 |m Herscovich, E.; Institut Joseph Fourier, Université Grenoble AlpesFrance; email: Estanislao.Herscovich@univ-grenoble-alpes.fr 
506 |2 openaire  |e Política editorial 
504 |a Berger, R., Koszulity for nonquadratic algebras (2001) J. Algebra, 239 (2), pp. 705-734 
504 |a Berger, R., La catégorie des modules gradués sur une algèbre graduée (nouvelle version du chapitre 5 d'un cours de Master 2 à Lyon 1) (2008), (French); Berger, R., Dubois-Violette, M., Wambst, M., Homogeneous algebras (2003) J. Algebra, 261 (1), pp. 172-185 
504 |a Berger, R., Ginzburg, V., Higher symplectic reflection algebras and non-homogeneous N-Koszul property (2006) J. Algebra, 304 (1), pp. 577-601 
504 |a Cassidy, T., Shelton, B., Generalizing the notion of Koszul algebra (2008) Math. Z., 260 (1), pp. 93-114 
504 |a Cheng, Z., Ye, Y., One-point extensions of t-Koszul algebras (2007) Acta Math. Sin. (Engl. Ser.), 23 (6), pp. 965-972 
504 |a Green, E.L., Marcos, E.N., Martínez-Villa, R., Zhang, P., D-Koszul algebras (2004) J. Pure Appl. Algebra, 193 (1-3), pp. 141-162 
504 |a Herscovich, E., On the multi-Koszul property for connected algebras (2013) Doc. Math., 18, pp. 1301-1347 
504 |a Herscovich, E., Applications of one-point extensions to compute the A∞-(co)module structure of several Ext (resp., Tor) groups https://www-fourier.ujf-grenoble.fr/~eherscov/Articles/Applications-of-one-point-extensions.pdf, Preprint, available at; Herscovich, E., Solotar, A., Suárez-Álvarez, M., PBW-deformations and deformations à la Gerstenhaber of N-Koszul algebras (2014) J. Noncommut. Geom., 8 (2), pp. 505-539 
504 |a Keller, B., Introduction to A-infinity algebras and modules (2001) Homology, Homotopy Appl., 3 (1), pp. 1-35 
504 |a Lemaire, J.-M., Algèbres connexes et homologie des espaces de lacets (1974) Lecture Notes in Mathematics, 422. , Springer-Verlag Berlin (French) 
504 |a Martínez Villa, R., Saorín, M., Koszul equivalences and dualities (2004) Pacific J. Math., 214 (2), pp. 359-378 
520 3 |a In [8] we introduced the notion of multi-Koszul algebra: it is an extension of the definition of generalized Koszul algebra given by R. Berger in [1] for homogeneous algebras (see also [7]) that can be applied to any nonnegatively graded connected algebra over a field k. The goal of this article is on the one hand to properly extend the notion of multi-Koszul algebra to the case where the base ring K is a product of copies of a field k, which a priori allows us to treat quiver algebras, and on the other hand to introduce the notion of multi-Koszul module such that it extends the usual definition of generalized Koszul module over a generalized Koszul algebra. We show eventually that multi-Koszul algebras and multi-Koszul modules are strongly linked via the notion of one-point extensions, as in the case of generalized Koszul algebras. Moreover, we describe the complete structure of right A∞-module on ExtA •(M,K) over ExtA •(K,K), where M is a multi-Koszul module over a multi-Koszul algebra A, extending a result in [9]. As a corollary, we obtain that the underlying right module structure of ExtA •(M,K) over ExtA •(K,K) is generated by the component of cohomological degree zero, as in the case of generalized Koszul modules over generalized Koszul algebras. © 2017 Elsevier Inc.  |l eng 
593 |a Institut Joseph Fourier, Université Grenoble Alpes, Grenoble, France 
593 |a Departamento de Matemática, FCEyN, UBA, Buenos Aires, Argentina 
690 1 0 |a A∞-ALGEBRAS 
690 1 0 |a HOMOLOGICAL ALGEBRA 
690 1 0 |a KOSZUL ALGEBRA 
690 1 0 |a YONEDA ALGEBRA 
773 0 |d Academic Press Inc., 2018  |g v. 499  |h pp. 478-505  |p J. Algebra  |x 00218693  |w (AR-BaUEN)CENRE-221  |t Journal of Algebra 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044849133&doi=10.1016%2fj.jalgebra.2017.12.015&partnerID=40&md5=856c7899ebc0c15a745f85deadf310ab  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jalgebra.2017.12.015  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00218693_v499_n_p478_Herscovich  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218693_v499_n_p478_Herscovich  |y Registro en la Biblioteca Digital 
961 |a paper_00218693_v499_n_p478_Herscovich  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 77998