Optimal partition problems for the fractional Laplacian

In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ A...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ritorto, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08211caa a22006977a 4500
001 PAPER-17035
003 AR-BaUEN
005 20230518204809.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85027524500 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Ritorto, A. 
245 1 0 |a Optimal partition problems for the fractional Laplacian 
260 |b Springer Verlag  |c 2018 
270 1 0 |m Ritorto, A.; Departamento de Matemática, FCEN – Universidad de Buenos Aires and IMAS – CONICETArgentina; email: aritorto@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Bonnaillie-Noël, V., Léna, C., Spectral minimal partitions of a sector (2014) Discret. Contin. Dyn. Syst. Ser. B, 19 (1), pp. 27-53 
504 |a Bozorgnia, F., Optimal partitions for first eigenvalues of the Laplace operator (2015) Numer. Methods Partial Differ. Equ., 31 (3), pp. 923-949 
504 |a Brasco, L., Parini, E., Squassina, M., Stability of variational eigenvalues for the fractional p -Laplacian (2016) Discret. Contin. Dyn. Syst., 36 (4), pp. 1813-1845 
504 |a Bucur, D., Buttazzo, G., (2005) Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations and Their Applications 65, , Birkhäuser Boston Inc, Boston, MA 
504 |a Bucur, D., Buttazzo, G., Henrot, A., Existence results for some optimal partition problems (1998) Adv. Math. Sci. Appl., 8 (2), pp. 571-579 
504 |a Bucur, D., Velichkov, B., Multiphase shape optimization problems (2014) SIAM J. Control Optim., 52 (6), pp. 3556-3591 
504 |a Buttazzo, G., Spectral optimization problems (2011) Rev. Mat. Complut., 24 (2), pp. 277-322 
504 |a Cafferelli, L.A., Lin, F.H., An optimal partition problem for eigenvalues (2007) J. Sci. Comput., 31 (1-2), pp. 5-18 
504 |a Conti, M., Terracini, S., Verzini, G., An optimal partition problem related to nonlinear eigenvalues (2003) J. Funct. Anal., 198 (1), pp. 160-196 
504 |a Conti, M., Terracini, S., Verzini, G., On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulae (2005) Calc. Var. Partial Differ. Equ., 22 (1), pp. 45-72 
504 |a Dal Maso, G., Garroni, A., New results on the asymptotic behavior of Dirichlet problems in perforated domains (1994) Math. Models Methods Appl. Sci., 4 (3), pp. 373-407 
504 |a Dal Maso, G., Murat, F., Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators (1997) Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (2), pp. 239-290 
504 |a Di Blasio, G., Volzone, B., Comparison and regularity results for the fractional Laplacian via symmetrization methods (2012) J. Differ. Equ., 253 (9), pp. 2593-2615 
504 |a Di Nezza, E., Palatucci, G., Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces (2012) Bull. Sci. Math., 136 (5), pp. 521-573 
504 |a Evans, L.C., Gariepy, R.F., (2015) Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, , revised, CRC Press, Boca Raton, FL 
504 |a Fernandez Bonder, J., Ritorto, A., (2016) Salort, , A.M. Shape optimization problems for nonlocal operators, ArXiv e-prints 
504 |a Grisvard, P., (2011) Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, vol. 69, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA: Reprint of the 1985 original [MR0775683], , With a foreword by Susanne C., Brenner 
504 |a Helffer, B., Hoffmann-Ostenhof, T., On a magnetic characterization of spectral minimal partitions (2013) J. Eur. Math. Soc. (JEMS), 15 (6), pp. 2081-2092 
504 |a Helffer, B., Hoffmann-Ostenhof, T., Terracini, S., On spectral minimal partitions: the case of the sphere (2010) Around the research of Vladimir Maz’ya. III, Int. Math. Ser. (N. Y.), 13, pp. 153-178. , Springer, New York 
504 |a Henrot, A., Pierre, M., Variation et optimisation de formes (2005) Mathématiques & Applications (Berlin) [Mathematics & Applications], 48. , Springer, Berlin. Une analyse géométrique. [A geometric analysis] 
504 |a Nehari, Z., Characteristic values associated with a class of non-linear second-order differential equations (1961) Acta Math., 105, pp. 141-175 
504 |a Osting, B., White, C.D., Oudet, É., Minimal Dirichlet energy partitions for graphs (2014) SIAM J. Sci. Comput., 36 (4), pp. A1635-A1651 
504 |a Ramos, M., Tavares, H., Terracini, S., Extremality conditions and regularity of solutions to optimal partition problems involving Laplacian eigenvalues (2016) Arch. Ration. Mech. Anal., 220 (1), pp. 363-443 
504 |a Shi, S., Xiao, J., On fractional capacities relative to bounded open Lipschitz sets (2016) Potential Anal., 45 (2), pp. 261-298 
504 |a Snelson, S., Regularity and long-time behavior of nonlocal heat flows (2015) Calc. Var. Partial Differ. Equ., 54 (2), pp. 1705-1723 
504 |a Tavares, H., Terracini, S., Sign-changing solutions of competition–diffusion elliptic systems and optimal partition problems (2012) Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2), pp. 279-300 
504 |a Terracini, S., Verzini, G., Zilio, A., Uniform Hölder bounds for strongly competing systems involving the square root of the laplacian (2016) J. Eur. Math. Soc. (JEMS), 18 (12), pp. 2865-2924 
504 |a Warma, M., The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets (2015) Potential Anal., 42 (2), pp. 499-547 
504 |a Zilio, A., Optimal regularity results related to a partition problem involving the half-Laplacian (2015) New Trends in Shape Optimization. International Series of Numerical Mathematics, pp. 301-314. , In:, Pratelli, A., Leugering, G. eds. 166, Birkhäuser/Springer, Cham 
520 3 |a In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ Aj= ∅ is understood in the sense of Gagliardo s-capacity, where 0 < s < 1. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s= 1 , studied in [5]. © 2017, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany.  |l eng 
536 |a Detalles de la financiación: PIP 11220150100032CO 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2012-0153 
536 |a Detalles de la financiación: This paper was partially supported by Grants UBACyT 20020130100283BA, CONICET PIP 11220150100032CO and ANPCyT PICT 2012-0153. The author wants to thank Prof. Juli?n Fern?ndez Bonder for helpful conversations. A. Ritorto is a doctoral fellow of CONICET. 
593 |a Departamento de Matemática, FCEN – Universidad de Buenos Aires and IMAS – CONICET, Buenos Aires, Argentina 
690 1 0 |a FRACTIONAL CAPACITIES 
690 1 0 |a FRACTIONAL PARTIAL EQUATIONS 
690 1 0 |a OPTIMAL PARTITION 
773 0 |d Springer Verlag, 2018  |g v. 197  |h pp. 501-516  |k n. 2  |p Ann. Mat. Pura Appl.  |x 03733114  |w (AR-BaUEN)CENRE-1530  |t Annali di Matematica Pura ed Applicata 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027524500&doi=10.1007%2fs10231-017-0689-5&partnerID=40&md5=6d84bd9e1cfea68a9750d232c93a5ac9  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10231-017-0689-5  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03733114_v197_n2_p501_Ritorto  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03733114_v197_n2_p501_Ritorto  |y Registro en la Biblioteca Digital 
961 |a paper_03733114_v197_n2_p501_Ritorto  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77988