Optimal partition problems for the fractional Laplacian
In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ A...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Springer Verlag
2018
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 08211caa a22006977a 4500 | ||
|---|---|---|---|
| 001 | PAPER-17035 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204809.0 | ||
| 008 | 190410s2018 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-85027524500 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Ritorto, A. | |
| 245 | 1 | 0 | |a Optimal partition problems for the fractional Laplacian |
| 260 | |b Springer Verlag |c 2018 | ||
| 270 | 1 | 0 | |m Ritorto, A.; Departamento de Matemática, FCEN – Universidad de Buenos Aires and IMAS – CONICETArgentina; email: aritorto@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Bonnaillie-Noël, V., Léna, C., Spectral minimal partitions of a sector (2014) Discret. Contin. Dyn. Syst. Ser. B, 19 (1), pp. 27-53 | ||
| 504 | |a Bozorgnia, F., Optimal partitions for first eigenvalues of the Laplace operator (2015) Numer. Methods Partial Differ. Equ., 31 (3), pp. 923-949 | ||
| 504 | |a Brasco, L., Parini, E., Squassina, M., Stability of variational eigenvalues for the fractional p -Laplacian (2016) Discret. Contin. Dyn. Syst., 36 (4), pp. 1813-1845 | ||
| 504 | |a Bucur, D., Buttazzo, G., (2005) Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations and Their Applications 65, , Birkhäuser Boston Inc, Boston, MA | ||
| 504 | |a Bucur, D., Buttazzo, G., Henrot, A., Existence results for some optimal partition problems (1998) Adv. Math. Sci. Appl., 8 (2), pp. 571-579 | ||
| 504 | |a Bucur, D., Velichkov, B., Multiphase shape optimization problems (2014) SIAM J. Control Optim., 52 (6), pp. 3556-3591 | ||
| 504 | |a Buttazzo, G., Spectral optimization problems (2011) Rev. Mat. Complut., 24 (2), pp. 277-322 | ||
| 504 | |a Cafferelli, L.A., Lin, F.H., An optimal partition problem for eigenvalues (2007) J. Sci. Comput., 31 (1-2), pp. 5-18 | ||
| 504 | |a Conti, M., Terracini, S., Verzini, G., An optimal partition problem related to nonlinear eigenvalues (2003) J. Funct. Anal., 198 (1), pp. 160-196 | ||
| 504 | |a Conti, M., Terracini, S., Verzini, G., On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulae (2005) Calc. Var. Partial Differ. Equ., 22 (1), pp. 45-72 | ||
| 504 | |a Dal Maso, G., Garroni, A., New results on the asymptotic behavior of Dirichlet problems in perforated domains (1994) Math. Models Methods Appl. Sci., 4 (3), pp. 373-407 | ||
| 504 | |a Dal Maso, G., Murat, F., Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators (1997) Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (2), pp. 239-290 | ||
| 504 | |a Di Blasio, G., Volzone, B., Comparison and regularity results for the fractional Laplacian via symmetrization methods (2012) J. Differ. Equ., 253 (9), pp. 2593-2615 | ||
| 504 | |a Di Nezza, E., Palatucci, G., Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces (2012) Bull. Sci. Math., 136 (5), pp. 521-573 | ||
| 504 | |a Evans, L.C., Gariepy, R.F., (2015) Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, , revised, CRC Press, Boca Raton, FL | ||
| 504 | |a Fernandez Bonder, J., Ritorto, A., (2016) Salort, , A.M. Shape optimization problems for nonlocal operators, ArXiv e-prints | ||
| 504 | |a Grisvard, P., (2011) Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, vol. 69, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA: Reprint of the 1985 original [MR0775683], , With a foreword by Susanne C., Brenner | ||
| 504 | |a Helffer, B., Hoffmann-Ostenhof, T., On a magnetic characterization of spectral minimal partitions (2013) J. Eur. Math. Soc. (JEMS), 15 (6), pp. 2081-2092 | ||
| 504 | |a Helffer, B., Hoffmann-Ostenhof, T., Terracini, S., On spectral minimal partitions: the case of the sphere (2010) Around the research of Vladimir Maz’ya. III, Int. Math. Ser. (N. Y.), 13, pp. 153-178. , Springer, New York | ||
| 504 | |a Henrot, A., Pierre, M., Variation et optimisation de formes (2005) Mathématiques & Applications (Berlin) [Mathematics & Applications], 48. , Springer, Berlin. Une analyse géométrique. [A geometric analysis] | ||
| 504 | |a Nehari, Z., Characteristic values associated with a class of non-linear second-order differential equations (1961) Acta Math., 105, pp. 141-175 | ||
| 504 | |a Osting, B., White, C.D., Oudet, É., Minimal Dirichlet energy partitions for graphs (2014) SIAM J. Sci. Comput., 36 (4), pp. A1635-A1651 | ||
| 504 | |a Ramos, M., Tavares, H., Terracini, S., Extremality conditions and regularity of solutions to optimal partition problems involving Laplacian eigenvalues (2016) Arch. Ration. Mech. Anal., 220 (1), pp. 363-443 | ||
| 504 | |a Shi, S., Xiao, J., On fractional capacities relative to bounded open Lipschitz sets (2016) Potential Anal., 45 (2), pp. 261-298 | ||
| 504 | |a Snelson, S., Regularity and long-time behavior of nonlocal heat flows (2015) Calc. Var. Partial Differ. Equ., 54 (2), pp. 1705-1723 | ||
| 504 | |a Tavares, H., Terracini, S., Sign-changing solutions of competition–diffusion elliptic systems and optimal partition problems (2012) Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2), pp. 279-300 | ||
| 504 | |a Terracini, S., Verzini, G., Zilio, A., Uniform Hölder bounds for strongly competing systems involving the square root of the laplacian (2016) J. Eur. Math. Soc. (JEMS), 18 (12), pp. 2865-2924 | ||
| 504 | |a Warma, M., The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets (2015) Potential Anal., 42 (2), pp. 499-547 | ||
| 504 | |a Zilio, A., Optimal regularity results related to a partition problem involving the half-Laplacian (2015) New Trends in Shape Optimization. International Series of Numerical Mathematics, pp. 301-314. , In:, Pratelli, A., Leugering, G. eds. 166, Birkhäuser/Springer, Cham | ||
| 520 | 3 | |a In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ Aj= ∅ is understood in the sense of Gagliardo s-capacity, where 0 < s < 1. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s= 1 , studied in [5]. © 2017, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany. |l eng | |
| 536 | |a Detalles de la financiación: PIP 11220150100032CO | ||
| 536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2012-0153 | ||
| 536 | |a Detalles de la financiación: This paper was partially supported by Grants UBACyT 20020130100283BA, CONICET PIP 11220150100032CO and ANPCyT PICT 2012-0153. The author wants to thank Prof. Juli?n Fern?ndez Bonder for helpful conversations. A. Ritorto is a doctoral fellow of CONICET. | ||
| 593 | |a Departamento de Matemática, FCEN – Universidad de Buenos Aires and IMAS – CONICET, Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a FRACTIONAL CAPACITIES |
| 690 | 1 | 0 | |a FRACTIONAL PARTIAL EQUATIONS |
| 690 | 1 | 0 | |a OPTIMAL PARTITION |
| 773 | 0 | |d Springer Verlag, 2018 |g v. 197 |h pp. 501-516 |k n. 2 |p Ann. Mat. Pura Appl. |x 03733114 |w (AR-BaUEN)CENRE-1530 |t Annali di Matematica Pura ed Applicata | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027524500&doi=10.1007%2fs10231-017-0689-5&partnerID=40&md5=6d84bd9e1cfea68a9750d232c93a5ac9 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s10231-017-0689-5 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_03733114_v197_n2_p501_Ritorto |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03733114_v197_n2_p501_Ritorto |y Registro en la Biblioteca Digital |
| 961 | |a paper_03733114_v197_n2_p501_Ritorto |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 77988 | ||