Electropore Formation in Mechanically Constrained Phospholipid Bilayers

Molecular dynamics simulations of lipid bilayers in aqueous systems reveal how an applied electric field stabilizes the reorganization of the water–membrane interface into water-filled, membrane-spanning, conductive pores with a symmetric, toroidal geometry. The pore formation process and the result...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fernández, M.L
Otros Autores: Risk, M.R, Vernier, P.T
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer New York LLC 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19498caa a22014297a 4500
001 PAPER-17032
003 AR-BaUEN
005 20230518204808.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85034788313 
024 7 |2 cas  |a 2 oleoyl 1 palmitoylphosphatidylcholine, 6753-55-5 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JMBBB 
100 1 |a Fernández, M.L. 
245 1 0 |a Electropore Formation in Mechanically Constrained Phospholipid Bilayers 
260 |b Springer New York LLC  |c 2018 
270 1 0 |m Vernier, P.T.; Frank Reidy Research Center for Bioelectrics, Old Dominion UniversityUnited States; email: pvernier@odu.edu 
506 |2 openaire  |e Política editorial 
504 |a Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J., Interaction models for water in relation to protein hydration (1981) Intermolecular forces, pp. 341-342. , Pullman B, (ed), Reidel, Dordrecht 
504 |a Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) J Chem Phys, 81, pp. 3684-3690. , COI: 1:CAS:528:DyaL2cXmtlGksbY%3D 
504 |a Berger, O., Edholm, O., Jahnig, F., Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature (1997) Biophys J, 72, pp. 2002-2013. , COI: 1:CAS:528:DyaK2sXivVOjsL4%3D, PID: 9129804 
504 |a Berghöfer, T., Eing, C., Flickinger, B., Hohenberger, P., Wegner, L.H., Frey, W., Nick, P., Nanosecond electric pulses trigger actin responses in plant cells (2009) Biochem Biophys Res Commun, 387, pp. 590-595. , PID: 19619510 
504 |a Breton, M., Mir, L.M., Microsecond and nanosecond electric pulses in cancer treatments (2012) Bioelectromagnetics, 33, pp. 106-123. , PID: 21812011 
504 |a Chopinet, L., Etienne, D., Rols, M.P., AFM sensing cortical actin cytoskeleton destabilization during plasma membrane electropermeabilization (2014) Cytoskeleton, 71, pp. 587-594 
504 |a DeBruin, K.A., Krassowka, W., Modeling electroporation in a single cell. I. Effects of field strength and rest potential (1999) Biophys J, 77, pp. 1213-1224. , COI: 1:CAS:528:DyaK1MXmtVanuro%3D, PID: 10465736 
504 |a Dehez, F., Delemotte, L., Kramar, P., Miklavčič, D., Tarek, M., Evidence of conducting hydrophobic nanopores across membranes in response to an electric field (2014) J Phys Chem C, 118, pp. 6752-6757. , COI: 1:CAS:528:DC%2BC2cXivFyqtr0%3D 
504 |a Essman, U., Perera, L., Berkowitz, M.L., Darden, H.T.L., Pedersen, L.G., A smooth particle mesh Ewald method (1995) J Chem Phys, 103, pp. 8577-8593 
504 |a Fernández, M.L., Marshall, G., Sagués, F., Reigada, R., Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers (2010) J Phys Chem B, 114, pp. 6855-6865. , PID: 20429602 
504 |a Fernández, M.L., Reigada, R., Effects of dimethyl sulfoxide on lipid membrane electroporation (2014) J Phys Chem B, 118, pp. 9306-9312. , PID: 25035931 
504 |a Fernández, M.L., Risk, M.R., Reigada, R., Vernier, P.T., Size-controlled nanopores in lipid membranes with stabilizing electric fields (2012) Biochem Biophys Res Commun, 423, pp. 325-330. , PID: 22659739 
504 |a Gurtovenko, A.A., Lyulina, A.S., Electroporation of asymmetric phospholipid bilayers (2014) J Phys Chem B, 118, pp. 9909-9918. , COI: 1:CAS:528:DC%2BC2cXhtVymtr%2FP, PID: 24986456 
504 |a Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M., LINCS: a linear constraint solver for molecular simulations (1997) J Comput Chem, 18, pp. 1463-1472. , COI: 1:CAS:528:DyaK2sXlvV2nu7g%3D 
504 |a Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E., GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation (2008) J Chem Theory Comput, 4, pp. 435-447. , COI: 1:CAS:528:DC%2BD1cXhsVSqurc%3D, PID: 26620784 
504 |a Ho, M.C., Levine, Z.A., Vernier, P.T., Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers (2013) J Membr Biol, 246, pp. 793-801. , COI: 1:CAS:528:DC%2BC3sXhs1SrtL7L, PID: 23644990 
504 |a Humphrey, W., Dalke, A., Schulten, K., VMD—visual molecular dynamics (1996) J Mol Graph, 14, pp. 33-38. , http://www.ks.uiuc.edu/Research/vmd/ 
504 |a Ingólfsson, H.I., Melo, M.N., van Eerden, F.J., Arnarez, C., Lopez, C.A., Wassenaar, T.A., Periole, X., Marrink, S.J., Lipid organization of the plasma membrane (2014) J Am Chem Soc, 136, pp. 14554-14559. , PID: 25229711 
504 |a Joshi, R.P., Hu, Q., Analysis of the cell membrane permeabilization mechanics and pore shape due to ultrashort electrical pulsing (2010) Med Biol Eng Comput, 48, pp. 837-844. , PID: 20635223 
504 |a Kanthou, C., Kranjc, S., Sersa, G., Tozer, G., Zupanic, A., Cemazar, M., The endothelial cytoskeleton as a target of electroporation-based therapies (2006) Mol Cancer Ther, 5, pp. 3145-3152. , COI: 1:CAS:528:DC%2BD28XhtlagsbvO, PID: 17172418 
504 |a Kiessling, V., Crane, J.M., Tamm, L.K., Transbilayer effect of raft-like domains in asymmetric planar bilayers measured by single molecule tracking (2006) Biophys J, 91, pp. 3313-3326. , COI: 1:CAS:528:DC%2BD28XhtFensLbN, PID: 16905614 
504 |a Kotnik, T., Frey, W., Sack, M., Meglič, S.H., Peterka, M., Miklavčič, D., Electroporation-based applications in biotechnology (2015) Trends Biotechnol, 33, pp. 480-488. , COI: 1:CAS:528:DC%2BC2MXhtVeis73N, PID: 26116227 
504 |a Kotulska, M., Dyrka, W., Sadowsi, P., Fluorescent methods in evaluation of nanopore conductivity and their computational validation (2010) Advanced electroporation techniques in biology and medicine, pp. 123-139. , Pakhomov AG, Miklavčič D, Markov MS, (eds), CRC Press, Taylor & Francis Group, Boca Raton 
504 |a Levine, Z.A., Vernier, P.T., Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation (2010) J Membr Biol, 236, pp. 27-36. , COI: 1:CAS:528:DC%2BC3cXps1CrsL8%3D, PID: 20623350 
504 |a Levine, Z.A., Vernier, P.T., Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime (2012) J Membr Biol, 245, pp. 599-610. , COI: 1:CAS:528:DC%2BC38XhsV2qsL7L, PID: 22815071 
504 |a Lyubartsev, A.P., Rabinovich, A.L., Force field development for lipid membrane simulations (2016) Biochim Biophys Acta, 1828, pp. 2483-2497 
504 |a MacCallum, J.L., Bennett, W.F.D., Tieleman, D.P., Distribution of amino acids in a lipid bilayer from computer simulations (2008) Biophys J, 94, pp. 3393-3404. , COI: 1:CAS:528:DC%2BD1cXltVOht7g%3D, PID: 18212019 
504 |a Marrink, S.J., de Vries, A.H., Tieleman, D.P., Lipids on the move: Simulations of membrane pores, domains, stalks and curves (2009) Biochim Biophys Acta, 1788, pp. 149-168. , COI: 1:CAS:528:DC%2BD1MXksVWmtQ%3D%3D, PID: 19013128 
504 |a Mihajlovic, M., Lazaridies, T., Antimicrobial peptides in toroidal and cylindrical pores (2010) Biochim Biophys Acta, 1798, pp. 1485-1493. , COI: 1:CAS:528:DC%2BC3cXntlalurs%3D, PID: 20403332 
504 |a Miyamoto, S., Kollman, P.A., SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models (1992) J Comput Chem, 13, pp. 952-962. , COI: 1:CAS:528:DyaK38Xlslykt7o%3D 
504 |a Ollila, O.H., Pabst, G., Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments (2016) Biochim Biophys Acta, 1858, pp. 2512-2528. , COI: 1:CAS:528:DC%2BC28XhsFygsLc%3D, PID: 26809025 
504 |a Pakhomov, A.G., Bowman, A.M., Ibey, B.L., Andre, F.M., Pakhomova, O.N., Schoenbach, K.H., Lipid nanopores can form stable, ion channel-like conduction pathway in cell membrane (2009) Biochem Biophys Res Commun, 385, pp. 181-186. , COI: 1:CAS:528:DC%2BD1MXntVGmtrY%3D, PID: 19450553 
504 |a Pakhomov, A.G., Pakhomova, O.N., Nanopores: a distinct transmembrane passageway in electroporated cells (2010) Advanced electroporation techniques in biology and medicine, pp. 177-194. , Pakhomov AG, Miklavčič D, Markov MS, (eds), CRC Press, Taylor & Francis Group, Boca Raton 
504 |a Polak, A., Bonhenry, D., Dehez, F., Kramar, P., Miklavčič, D., Tarek, M., On the electroporation thresholds of lipid bilayers: molecular dynamics simulation investigations (2013) J Membr Biol, 246, pp. 843-850. , COI: 1:CAS:528:DC%2BC3sXhs1SrsLnM, PID: 23780415 
504 |a Polak, A., Tarek, M., Tomšič, M., Valant, J., Poklar Ulrihe, N., Jamnik, A., Kramar, P., Miklavčič, D., Electroporation of archaeal lipid membranes using MD simulations (2014) Bioelectrochemistry, 100, pp. 18-26. , COI: 1:CAS:528:DC%2BC2cXhtV2rsbo%3D, PID: 24461702 
504 |a Python, , http://www.python.org 
504 |a (2016) R: a language and environment for statistical computing, , R Foundation for Statistical Computing, Vienna 
504 |a Raghupathy, R., Anilkumar, A.A., Polley, A., Singh, P.P., Yadav, M., Johnson, C., Suryawanshi, S., Mayor, S., Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins (2015) Cell, 161, pp. 581-594. , COI: 1:CAS:528:DC%2BC2MXnt1emtrk%3D, PID: 25910209 
504 |a Reigada, R., Electroporation of heterogeneous lipid membranes (2014) Biochim Biophys Acta, 1838, pp. 814-821. , COI: 1:CAS:528:DC%2BC2cXhsFClsrs%3D, PID: 24144543 
504 |a Risselada, H.J., Mark, A.E., Marrink, S.J., Application of mean field boundary potentials in simulations of lipid vesicles (2008) J Phys Chem B, 112, pp. 7438-7447. , PID: 18512884 
504 |a Rols, M.P., Teissié, J., Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization (1992) Biochim Biophys Acta, 1111, pp. 45-50. , COI: 1:CAS:528:DyaK3sXjsFehtA%3D%3D, PID: 1390863 
504 |a Rosazza, C., Escoffre, J.M., Zumbusch, A., Rols, M.P., The actin cytoskeleton has an active role in the electrotransfer of plasmid DNA in mammalian cells (2011) Mol Ther, 19, pp. 913-921. , COI: 1:CAS:528:DC%2BC3MXitleqsLo%3D, PID: 21343915 
504 |a Sapay, N., Bennett, W.F.D., Tieleman, D.P., Thermodynamics of flip-flop and desorption for a systematic series of phosphatidylcholine lipids (2009) Soft Matter, 5, pp. 3295-3302. , COI: 1:CAS:528:DC%2BD1MXhtVSlsLjF 
504 |a Sengupta, D., Leontiadou, H., Mark, A.E., Marrink, S.J., Toroidal pores formed by antimicrobial peptides show significant disorder (2008) Biochim Biophys Acta Biomembr, 1778, pp. 2308-2317. , COI: 1:CAS:528:DC%2BD1cXhtFCktbrO 
504 |a Silve, A., Brunet, A.G., Al-Sakere, B., Ivorra, A., Mir, L.M., Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: electropermeabilization-induced electro-desensitization? (2014) Bichem Biophys Acta, 1840, pp. 2139-2151. , COI: 1:CAS:528:DC%2BC2cXhtVSlsLnL 
504 |a Siwi, Z., Gu, Y., Spohr, H.A., Baur, D., Wolf-Reber, A., Spohr, R., Apel, P., Korchev, Y.E., Rectification and voltage gating of ion currents in a nanofabricated pore (2002) Europhys Lett, 60, pp. 349-355 
504 |a Smith, K.C., Weaver, J.C., Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses (2011) Biochem Biophys Res Commun, 412, pp. 8-12. , COI: 1:CAS:528:DC%2BC3MXhtVKlu7%2FM, PID: 21756883 
504 |a Son, R.S., Smith, K.C., Gowrishankar, T.R., Vernier, P.T., Weaver, J.C., Basic features of a cell electroporation model: Illustrative behavior for two very different pulses (2014) J Membr Biol, 247, pp. 1209-1228. , COI: 1:CAS:528:DC%2BC2cXhtF2qu7fP, PID: 25048527 
504 |a Stacey, M., Fox, P., Buescher, S., Kolb, J., Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival (2011) Bioelectrochemistry, 82, pp. 131-134. , COI: 1:CAS:528:DC%2BC3MXht1ejtbbL, PID: 21719360 
504 |a Stoddart, D., Ayub, M., Höfler, L., Raychaudhuri, P., Klingelhoefer, J.W., Maglia, G., Heron, A., Bayley, H., Functional truncated membrane pores (2014) Proc Natl Acad Sci USA, 111, pp. 2425-2430. , COI: 1:CAS:528:DC%2BC2cXivFamsLk%3D, PID: 24469792 
504 |a Sugar, I.P., Neumann, E., Stochastic model for electric field-induced membrane pores electroporation (1984) Biophys Chem, 19, pp. 211-225. , COI: 1:CAS:528:DyaL2cXksFSntr0%3D, PID: 6722274 
504 |a Sun, S., Yin, G., Lee, Y.K., Wong, J.T., Zhang, T.Y., Effects of deformability and thermal motion of lipid membrane on electroporation: by molecular dynamics simulations (2011) Biochem Biophys Res Commun, 404, pp. 684-688. , COI: 1:CAS:528:DC%2BC3MXntVWltA%3D%3D, PID: 21156156 
504 |a Tarek, M., Membrane electroporation: a molecular dynamics study (2005) Biophys J, 88, pp. 4045-4053. , COI: 1:CAS:528:DC%2BD2MXksl2jtrg%3D, PID: 15764667 
504 |a Teissié, J., Rols, M.P., Manipulation of cell cytoskeleton affects the lifetime of cell membrane electropermeabilization (1994) Ann N Y Acad Sci, 720, pp. 98-110. , PID: 8010657 
504 |a Tieleman, D.P., The molecular basis of electroporation (2004) BMC Biochem, 5, p. 10. , PID: 15260890 
504 |a Thompson, G.L., Roth, C., Tolstykh, G., Kuipers, M., Ibey, B.L., Disruption of the actin cortex contributes to susceptibility of mammalian cells to nanosecond pulsed electric fields (2014) Bioelectromagnetics, 35, pp. 262-272. , COI: 1:CAS:528:DC%2BC2cXltFegtb4%3D, PID: 24619788 
504 |a Tsong, T., Electroporation of cell membranes (1991) Biophys J, 60, pp. 297-306. , COI: 1:CAS:528:DyaK3MXltlSrt7s%3D, PID: 1912274 
504 |a Weaver, J.C., Chizmadzhev, Y.A., Theory of electroporation: a review (1996) Bioelectrochem Bioenerg, 41, pp. 135-160. , COI: 1:CAS:528:DyaK28XntlKrtro%3D 
504 |a Weaver, J.C., Electroporation of cells and tissues (2000) IEEE Trans Plasma Sci, 28, pp. 24-33. , COI: 1:CAS:528:DC%2BD3cXktVOms74%3D 
504 |a Yarmush, M.L., Golberg, A., Serša, G., Kotnik, T., Miklavčič, D., Electroporation-based technologies for medicine: principles, applications, and challenges (2014) Annu Rev Biomed Eng, 16, pp. 295-320. , COI: 1:CAS:528:DC%2BC2cXhsVKgt7%2FI, PID: 24905876 
504 |a Ziegler, M.J., Vernier, P.T., Interface water dynamics and porating electric field for phospholipid bilayers (2008) J Phys Chem B, 112, pp. 13588-13596. , COI: 1:CAS:528:DC%2BD1cXht1SksLnP, PID: 18837540 
520 3 |a Molecular dynamics simulations of lipid bilayers in aqueous systems reveal how an applied electric field stabilizes the reorganization of the water–membrane interface into water-filled, membrane-spanning, conductive pores with a symmetric, toroidal geometry. The pore formation process and the resulting symmetric structures are consistent with other mathematical approaches such as continuum models formulated to describe the electroporation process. Some experimental data suggest, however, that the shape of lipid electropores in living cell membranes may be asymmetric. We describe here the axially asymmetric pores that form when mechanical constraints are applied to selected phospholipid atoms. Electropore formation proceeds even with severe constraints in place, but pore shape and pore formation time are affected. Since lateral and transverse movement of phospholipids may be restricted in cell membranes by covalent attachments to or non-covalent associations with other components of the membrane or to membrane-proximate intracellular or extracellular biomolecular assemblies, these lipid-constrained molecular models point the way to more realistic representations of cell membranes in electric fields. © 2017, Springer Science+Business Media, LLC, part of Springer Nature.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Multidisciplinary University Research Initiative, FA9550-15-1-0517 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT GC 20620130100027BA 
536 |a Detalles de la financiación: Air Force Office of Scientific Research, FA9550-14-1-0123 
536 |a Detalles de la financiación: Old Dominion University 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, ITBACyT 2015, PIP GI 11220110100379 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 
536 |a Detalles de la financiación: Acknowledgements Computational resources were provided by the Centro de Cómputos de Alto Rendimiento (CeCAR) - Facultad de Ciencias Exactas y Naturales – UBA and ITBA. PTV was supported by the Frank Reidy Research Center for Bioelectrics and by the Air Force Office of Scientific Research (FA9550-14-1-0123 and MURI grant FA9550-15-1-0517 on “Nanoelectropulse-Induced Electromechanical Signaling and Control of Biological Systems,” administered through Old Dominion University). MLF and MR were supported in part by grants from Universidad de Buenos Aires (UBACyT GC 20620130100027BA), CONICET (PIP GI 11220110100379) and ITBA (ITBACyT 2015), and MR received additional support from IBM of Argentina. MLF and MR gratefully acknowledge the guidance of Professor G. Marshall. 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina 
593 |a CONICET - Universidad de Buenos Aires, Instituto de Física del Plasma (INFIP), Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 
593 |a Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina 
593 |a Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States 
690 1 0 |a ELECTROPORATION 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a PHOSPHOLIPID BILAYER 
690 1 0 |a POSITION CONSTRAINTS 
690 1 0 |a 2 OLEOYL 1 PALMITOYLPHOSPHATIDYLCHOLINE 
690 1 0 |a ARTICLE 
690 1 0 |a CELL MEMBRANE 
690 1 0 |a CHANNEL GATING 
690 1 0 |a COVALENT BOND 
690 1 0 |a ELECTRIC FIELD 
690 1 0 |a ELECTROPORATION 
690 1 0 |a EXTRACELLULAR MATRIX 
690 1 0 |a MECHANICAL CONSTRAINT 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a MOLECULAR MODEL 
690 1 0 |a PARTICLE SIZE 
690 1 0 |a PHOSPHOLIPID BILAYER 
690 1 0 |a PROTEIN ASSEMBLY 
690 1 0 |a SIMULATION 
700 1 |a Risk, M.R. 
700 1 |a Vernier, P.T. 
773 0 |d Springer New York LLC, 2018  |g v. 251  |h pp. 237-245  |k n. 2  |p J. Membr. Biol.  |x 00222631  |w (AR-BaUEN)CENRE-2377  |t Journal of Membrane Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034788313&doi=10.1007%2fs00232-017-0002-y&partnerID=40&md5=1f63a528b941bb065de09a038e6b9127  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00232-017-0002-y  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00222631_v251_n2_p237_Fernandez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222631_v251_n2_p237_Fernandez  |y Registro en la Biblioteca Digital 
961 |a paper_00222631_v251_n2_p237_Fernandez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77985