Electropore Formation in Mechanically Constrained Phospholipid Bilayers
Molecular dynamics simulations of lipid bilayers in aqueous systems reveal how an applied electric field stabilizes the reorganization of the water–membrane interface into water-filled, membrane-spanning, conductive pores with a symmetric, toroidal geometry. The pore formation process and the result...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Springer New York LLC
2018
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 19498caa a22014297a 4500 | ||
|---|---|---|---|
| 001 | PAPER-17032 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204808.0 | ||
| 008 | 190410s2018 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-85034788313 | |
| 024 | 7 | |2 cas |a 2 oleoyl 1 palmitoylphosphatidylcholine, 6753-55-5 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a JMBBB | ||
| 100 | 1 | |a Fernández, M.L. | |
| 245 | 1 | 0 | |a Electropore Formation in Mechanically Constrained Phospholipid Bilayers |
| 260 | |b Springer New York LLC |c 2018 | ||
| 270 | 1 | 0 | |m Vernier, P.T.; Frank Reidy Research Center for Bioelectrics, Old Dominion UniversityUnited States; email: pvernier@odu.edu |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J., Interaction models for water in relation to protein hydration (1981) Intermolecular forces, pp. 341-342. , Pullman B, (ed), Reidel, Dordrecht | ||
| 504 | |a Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) J Chem Phys, 81, pp. 3684-3690. , COI: 1:CAS:528:DyaL2cXmtlGksbY%3D | ||
| 504 | |a Berger, O., Edholm, O., Jahnig, F., Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature (1997) Biophys J, 72, pp. 2002-2013. , COI: 1:CAS:528:DyaK2sXivVOjsL4%3D, PID: 9129804 | ||
| 504 | |a Berghöfer, T., Eing, C., Flickinger, B., Hohenberger, P., Wegner, L.H., Frey, W., Nick, P., Nanosecond electric pulses trigger actin responses in plant cells (2009) Biochem Biophys Res Commun, 387, pp. 590-595. , PID: 19619510 | ||
| 504 | |a Breton, M., Mir, L.M., Microsecond and nanosecond electric pulses in cancer treatments (2012) Bioelectromagnetics, 33, pp. 106-123. , PID: 21812011 | ||
| 504 | |a Chopinet, L., Etienne, D., Rols, M.P., AFM sensing cortical actin cytoskeleton destabilization during plasma membrane electropermeabilization (2014) Cytoskeleton, 71, pp. 587-594 | ||
| 504 | |a DeBruin, K.A., Krassowka, W., Modeling electroporation in a single cell. I. Effects of field strength and rest potential (1999) Biophys J, 77, pp. 1213-1224. , COI: 1:CAS:528:DyaK1MXmtVanuro%3D, PID: 10465736 | ||
| 504 | |a Dehez, F., Delemotte, L., Kramar, P., Miklavčič, D., Tarek, M., Evidence of conducting hydrophobic nanopores across membranes in response to an electric field (2014) J Phys Chem C, 118, pp. 6752-6757. , COI: 1:CAS:528:DC%2BC2cXivFyqtr0%3D | ||
| 504 | |a Essman, U., Perera, L., Berkowitz, M.L., Darden, H.T.L., Pedersen, L.G., A smooth particle mesh Ewald method (1995) J Chem Phys, 103, pp. 8577-8593 | ||
| 504 | |a Fernández, M.L., Marshall, G., Sagués, F., Reigada, R., Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers (2010) J Phys Chem B, 114, pp. 6855-6865. , PID: 20429602 | ||
| 504 | |a Fernández, M.L., Reigada, R., Effects of dimethyl sulfoxide on lipid membrane electroporation (2014) J Phys Chem B, 118, pp. 9306-9312. , PID: 25035931 | ||
| 504 | |a Fernández, M.L., Risk, M.R., Reigada, R., Vernier, P.T., Size-controlled nanopores in lipid membranes with stabilizing electric fields (2012) Biochem Biophys Res Commun, 423, pp. 325-330. , PID: 22659739 | ||
| 504 | |a Gurtovenko, A.A., Lyulina, A.S., Electroporation of asymmetric phospholipid bilayers (2014) J Phys Chem B, 118, pp. 9909-9918. , COI: 1:CAS:528:DC%2BC2cXhtVymtr%2FP, PID: 24986456 | ||
| 504 | |a Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M., LINCS: a linear constraint solver for molecular simulations (1997) J Comput Chem, 18, pp. 1463-1472. , COI: 1:CAS:528:DyaK2sXlvV2nu7g%3D | ||
| 504 | |a Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E., GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation (2008) J Chem Theory Comput, 4, pp. 435-447. , COI: 1:CAS:528:DC%2BD1cXhsVSqurc%3D, PID: 26620784 | ||
| 504 | |a Ho, M.C., Levine, Z.A., Vernier, P.T., Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers (2013) J Membr Biol, 246, pp. 793-801. , COI: 1:CAS:528:DC%2BC3sXhs1SrtL7L, PID: 23644990 | ||
| 504 | |a Humphrey, W., Dalke, A., Schulten, K., VMD—visual molecular dynamics (1996) J Mol Graph, 14, pp. 33-38. , http://www.ks.uiuc.edu/Research/vmd/ | ||
| 504 | |a Ingólfsson, H.I., Melo, M.N., van Eerden, F.J., Arnarez, C., Lopez, C.A., Wassenaar, T.A., Periole, X., Marrink, S.J., Lipid organization of the plasma membrane (2014) J Am Chem Soc, 136, pp. 14554-14559. , PID: 25229711 | ||
| 504 | |a Joshi, R.P., Hu, Q., Analysis of the cell membrane permeabilization mechanics and pore shape due to ultrashort electrical pulsing (2010) Med Biol Eng Comput, 48, pp. 837-844. , PID: 20635223 | ||
| 504 | |a Kanthou, C., Kranjc, S., Sersa, G., Tozer, G., Zupanic, A., Cemazar, M., The endothelial cytoskeleton as a target of electroporation-based therapies (2006) Mol Cancer Ther, 5, pp. 3145-3152. , COI: 1:CAS:528:DC%2BD28XhtlagsbvO, PID: 17172418 | ||
| 504 | |a Kiessling, V., Crane, J.M., Tamm, L.K., Transbilayer effect of raft-like domains in asymmetric planar bilayers measured by single molecule tracking (2006) Biophys J, 91, pp. 3313-3326. , COI: 1:CAS:528:DC%2BD28XhtFensLbN, PID: 16905614 | ||
| 504 | |a Kotnik, T., Frey, W., Sack, M., Meglič, S.H., Peterka, M., Miklavčič, D., Electroporation-based applications in biotechnology (2015) Trends Biotechnol, 33, pp. 480-488. , COI: 1:CAS:528:DC%2BC2MXhtVeis73N, PID: 26116227 | ||
| 504 | |a Kotulska, M., Dyrka, W., Sadowsi, P., Fluorescent methods in evaluation of nanopore conductivity and their computational validation (2010) Advanced electroporation techniques in biology and medicine, pp. 123-139. , Pakhomov AG, Miklavčič D, Markov MS, (eds), CRC Press, Taylor & Francis Group, Boca Raton | ||
| 504 | |a Levine, Z.A., Vernier, P.T., Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation (2010) J Membr Biol, 236, pp. 27-36. , COI: 1:CAS:528:DC%2BC3cXps1CrsL8%3D, PID: 20623350 | ||
| 504 | |a Levine, Z.A., Vernier, P.T., Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime (2012) J Membr Biol, 245, pp. 599-610. , COI: 1:CAS:528:DC%2BC38XhsV2qsL7L, PID: 22815071 | ||
| 504 | |a Lyubartsev, A.P., Rabinovich, A.L., Force field development for lipid membrane simulations (2016) Biochim Biophys Acta, 1828, pp. 2483-2497 | ||
| 504 | |a MacCallum, J.L., Bennett, W.F.D., Tieleman, D.P., Distribution of amino acids in a lipid bilayer from computer simulations (2008) Biophys J, 94, pp. 3393-3404. , COI: 1:CAS:528:DC%2BD1cXltVOht7g%3D, PID: 18212019 | ||
| 504 | |a Marrink, S.J., de Vries, A.H., Tieleman, D.P., Lipids on the move: Simulations of membrane pores, domains, stalks and curves (2009) Biochim Biophys Acta, 1788, pp. 149-168. , COI: 1:CAS:528:DC%2BD1MXksVWmtQ%3D%3D, PID: 19013128 | ||
| 504 | |a Mihajlovic, M., Lazaridies, T., Antimicrobial peptides in toroidal and cylindrical pores (2010) Biochim Biophys Acta, 1798, pp. 1485-1493. , COI: 1:CAS:528:DC%2BC3cXntlalurs%3D, PID: 20403332 | ||
| 504 | |a Miyamoto, S., Kollman, P.A., SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models (1992) J Comput Chem, 13, pp. 952-962. , COI: 1:CAS:528:DyaK38Xlslykt7o%3D | ||
| 504 | |a Ollila, O.H., Pabst, G., Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments (2016) Biochim Biophys Acta, 1858, pp. 2512-2528. , COI: 1:CAS:528:DC%2BC28XhsFygsLc%3D, PID: 26809025 | ||
| 504 | |a Pakhomov, A.G., Bowman, A.M., Ibey, B.L., Andre, F.M., Pakhomova, O.N., Schoenbach, K.H., Lipid nanopores can form stable, ion channel-like conduction pathway in cell membrane (2009) Biochem Biophys Res Commun, 385, pp. 181-186. , COI: 1:CAS:528:DC%2BD1MXntVGmtrY%3D, PID: 19450553 | ||
| 504 | |a Pakhomov, A.G., Pakhomova, O.N., Nanopores: a distinct transmembrane passageway in electroporated cells (2010) Advanced electroporation techniques in biology and medicine, pp. 177-194. , Pakhomov AG, Miklavčič D, Markov MS, (eds), CRC Press, Taylor & Francis Group, Boca Raton | ||
| 504 | |a Polak, A., Bonhenry, D., Dehez, F., Kramar, P., Miklavčič, D., Tarek, M., On the electroporation thresholds of lipid bilayers: molecular dynamics simulation investigations (2013) J Membr Biol, 246, pp. 843-850. , COI: 1:CAS:528:DC%2BC3sXhs1SrsLnM, PID: 23780415 | ||
| 504 | |a Polak, A., Tarek, M., Tomšič, M., Valant, J., Poklar Ulrihe, N., Jamnik, A., Kramar, P., Miklavčič, D., Electroporation of archaeal lipid membranes using MD simulations (2014) Bioelectrochemistry, 100, pp. 18-26. , COI: 1:CAS:528:DC%2BC2cXhtV2rsbo%3D, PID: 24461702 | ||
| 504 | |a Python, , http://www.python.org | ||
| 504 | |a (2016) R: a language and environment for statistical computing, , R Foundation for Statistical Computing, Vienna | ||
| 504 | |a Raghupathy, R., Anilkumar, A.A., Polley, A., Singh, P.P., Yadav, M., Johnson, C., Suryawanshi, S., Mayor, S., Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins (2015) Cell, 161, pp. 581-594. , COI: 1:CAS:528:DC%2BC2MXnt1emtrk%3D, PID: 25910209 | ||
| 504 | |a Reigada, R., Electroporation of heterogeneous lipid membranes (2014) Biochim Biophys Acta, 1838, pp. 814-821. , COI: 1:CAS:528:DC%2BC2cXhsFClsrs%3D, PID: 24144543 | ||
| 504 | |a Risselada, H.J., Mark, A.E., Marrink, S.J., Application of mean field boundary potentials in simulations of lipid vesicles (2008) J Phys Chem B, 112, pp. 7438-7447. , PID: 18512884 | ||
| 504 | |a Rols, M.P., Teissié, J., Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization (1992) Biochim Biophys Acta, 1111, pp. 45-50. , COI: 1:CAS:528:DyaK3sXjsFehtA%3D%3D, PID: 1390863 | ||
| 504 | |a Rosazza, C., Escoffre, J.M., Zumbusch, A., Rols, M.P., The actin cytoskeleton has an active role in the electrotransfer of plasmid DNA in mammalian cells (2011) Mol Ther, 19, pp. 913-921. , COI: 1:CAS:528:DC%2BC3MXitleqsLo%3D, PID: 21343915 | ||
| 504 | |a Sapay, N., Bennett, W.F.D., Tieleman, D.P., Thermodynamics of flip-flop and desorption for a systematic series of phosphatidylcholine lipids (2009) Soft Matter, 5, pp. 3295-3302. , COI: 1:CAS:528:DC%2BD1MXhtVSlsLjF | ||
| 504 | |a Sengupta, D., Leontiadou, H., Mark, A.E., Marrink, S.J., Toroidal pores formed by antimicrobial peptides show significant disorder (2008) Biochim Biophys Acta Biomembr, 1778, pp. 2308-2317. , COI: 1:CAS:528:DC%2BD1cXhtFCktbrO | ||
| 504 | |a Silve, A., Brunet, A.G., Al-Sakere, B., Ivorra, A., Mir, L.M., Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: electropermeabilization-induced electro-desensitization? (2014) Bichem Biophys Acta, 1840, pp. 2139-2151. , COI: 1:CAS:528:DC%2BC2cXhtVSlsLnL | ||
| 504 | |a Siwi, Z., Gu, Y., Spohr, H.A., Baur, D., Wolf-Reber, A., Spohr, R., Apel, P., Korchev, Y.E., Rectification and voltage gating of ion currents in a nanofabricated pore (2002) Europhys Lett, 60, pp. 349-355 | ||
| 504 | |a Smith, K.C., Weaver, J.C., Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses (2011) Biochem Biophys Res Commun, 412, pp. 8-12. , COI: 1:CAS:528:DC%2BC3MXhtVKlu7%2FM, PID: 21756883 | ||
| 504 | |a Son, R.S., Smith, K.C., Gowrishankar, T.R., Vernier, P.T., Weaver, J.C., Basic features of a cell electroporation model: Illustrative behavior for two very different pulses (2014) J Membr Biol, 247, pp. 1209-1228. , COI: 1:CAS:528:DC%2BC2cXhtF2qu7fP, PID: 25048527 | ||
| 504 | |a Stacey, M., Fox, P., Buescher, S., Kolb, J., Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival (2011) Bioelectrochemistry, 82, pp. 131-134. , COI: 1:CAS:528:DC%2BC3MXht1ejtbbL, PID: 21719360 | ||
| 504 | |a Stoddart, D., Ayub, M., Höfler, L., Raychaudhuri, P., Klingelhoefer, J.W., Maglia, G., Heron, A., Bayley, H., Functional truncated membrane pores (2014) Proc Natl Acad Sci USA, 111, pp. 2425-2430. , COI: 1:CAS:528:DC%2BC2cXivFamsLk%3D, PID: 24469792 | ||
| 504 | |a Sugar, I.P., Neumann, E., Stochastic model for electric field-induced membrane pores electroporation (1984) Biophys Chem, 19, pp. 211-225. , COI: 1:CAS:528:DyaL2cXksFSntr0%3D, PID: 6722274 | ||
| 504 | |a Sun, S., Yin, G., Lee, Y.K., Wong, J.T., Zhang, T.Y., Effects of deformability and thermal motion of lipid membrane on electroporation: by molecular dynamics simulations (2011) Biochem Biophys Res Commun, 404, pp. 684-688. , COI: 1:CAS:528:DC%2BC3MXntVWltA%3D%3D, PID: 21156156 | ||
| 504 | |a Tarek, M., Membrane electroporation: a molecular dynamics study (2005) Biophys J, 88, pp. 4045-4053. , COI: 1:CAS:528:DC%2BD2MXksl2jtrg%3D, PID: 15764667 | ||
| 504 | |a Teissié, J., Rols, M.P., Manipulation of cell cytoskeleton affects the lifetime of cell membrane electropermeabilization (1994) Ann N Y Acad Sci, 720, pp. 98-110. , PID: 8010657 | ||
| 504 | |a Tieleman, D.P., The molecular basis of electroporation (2004) BMC Biochem, 5, p. 10. , PID: 15260890 | ||
| 504 | |a Thompson, G.L., Roth, C., Tolstykh, G., Kuipers, M., Ibey, B.L., Disruption of the actin cortex contributes to susceptibility of mammalian cells to nanosecond pulsed electric fields (2014) Bioelectromagnetics, 35, pp. 262-272. , COI: 1:CAS:528:DC%2BC2cXltFegtb4%3D, PID: 24619788 | ||
| 504 | |a Tsong, T., Electroporation of cell membranes (1991) Biophys J, 60, pp. 297-306. , COI: 1:CAS:528:DyaK3MXltlSrt7s%3D, PID: 1912274 | ||
| 504 | |a Weaver, J.C., Chizmadzhev, Y.A., Theory of electroporation: a review (1996) Bioelectrochem Bioenerg, 41, pp. 135-160. , COI: 1:CAS:528:DyaK28XntlKrtro%3D | ||
| 504 | |a Weaver, J.C., Electroporation of cells and tissues (2000) IEEE Trans Plasma Sci, 28, pp. 24-33. , COI: 1:CAS:528:DC%2BD3cXktVOms74%3D | ||
| 504 | |a Yarmush, M.L., Golberg, A., Serša, G., Kotnik, T., Miklavčič, D., Electroporation-based technologies for medicine: principles, applications, and challenges (2014) Annu Rev Biomed Eng, 16, pp. 295-320. , COI: 1:CAS:528:DC%2BC2cXhsVKgt7%2FI, PID: 24905876 | ||
| 504 | |a Ziegler, M.J., Vernier, P.T., Interface water dynamics and porating electric field for phospholipid bilayers (2008) J Phys Chem B, 112, pp. 13588-13596. , COI: 1:CAS:528:DC%2BD1cXht1SksLnP, PID: 18837540 | ||
| 520 | 3 | |a Molecular dynamics simulations of lipid bilayers in aqueous systems reveal how an applied electric field stabilizes the reorganization of the water–membrane interface into water-filled, membrane-spanning, conductive pores with a symmetric, toroidal geometry. The pore formation process and the resulting symmetric structures are consistent with other mathematical approaches such as continuum models formulated to describe the electroporation process. Some experimental data suggest, however, that the shape of lipid electropores in living cell membranes may be asymmetric. We describe here the axially asymmetric pores that form when mechanical constraints are applied to selected phospholipid atoms. Electropore formation proceeds even with severe constraints in place, but pore shape and pore formation time are affected. Since lateral and transverse movement of phospholipids may be restricted in cell membranes by covalent attachments to or non-covalent associations with other components of the membrane or to membrane-proximate intracellular or extracellular biomolecular assemblies, these lipid-constrained molecular models point the way to more realistic representations of cell membranes in electric fields. © 2017, Springer Science+Business Media, LLC, part of Springer Nature. |l eng | |
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas | ||
| 536 | |a Detalles de la financiación: Multidisciplinary University Research Initiative, FA9550-15-1-0517 | ||
| 536 | |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT GC 20620130100027BA | ||
| 536 | |a Detalles de la financiación: Air Force Office of Scientific Research, FA9550-14-1-0123 | ||
| 536 | |a Detalles de la financiación: Old Dominion University | ||
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, ITBACyT 2015, PIP GI 11220110100379 | ||
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina | ||
| 536 | |a Detalles de la financiación: Acknowledgements Computational resources were provided by the Centro de Cómputos de Alto Rendimiento (CeCAR) - Facultad de Ciencias Exactas y Naturales – UBA and ITBA. PTV was supported by the Frank Reidy Research Center for Bioelectrics and by the Air Force Office of Scientific Research (FA9550-14-1-0123 and MURI grant FA9550-15-1-0517 on “Nanoelectropulse-Induced Electromechanical Signaling and Control of Biological Systems,” administered through Old Dominion University). MLF and MR were supported in part by grants from Universidad de Buenos Aires (UBACyT GC 20620130100027BA), CONICET (PIP GI 11220110100379) and ITBA (ITBACyT 2015), and MR received additional support from IBM of Argentina. MLF and MR gratefully acknowledge the guidance of Professor G. Marshall. | ||
| 593 | |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina | ||
| 593 | |a CONICET - Universidad de Buenos Aires, Instituto de Física del Plasma (INFIP), Buenos Aires, Argentina | ||
| 593 | |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina | ||
| 593 | |a Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina | ||
| 593 | |a Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States | ||
| 690 | 1 | 0 | |a ELECTROPORATION |
| 690 | 1 | 0 | |a MOLECULAR DYNAMICS |
| 690 | 1 | 0 | |a PHOSPHOLIPID BILAYER |
| 690 | 1 | 0 | |a POSITION CONSTRAINTS |
| 690 | 1 | 0 | |a 2 OLEOYL 1 PALMITOYLPHOSPHATIDYLCHOLINE |
| 690 | 1 | 0 | |a ARTICLE |
| 690 | 1 | 0 | |a CELL MEMBRANE |
| 690 | 1 | 0 | |a CHANNEL GATING |
| 690 | 1 | 0 | |a COVALENT BOND |
| 690 | 1 | 0 | |a ELECTRIC FIELD |
| 690 | 1 | 0 | |a ELECTROPORATION |
| 690 | 1 | 0 | |a EXTRACELLULAR MATRIX |
| 690 | 1 | 0 | |a MECHANICAL CONSTRAINT |
| 690 | 1 | 0 | |a MOLECULAR DYNAMICS |
| 690 | 1 | 0 | |a MOLECULAR MODEL |
| 690 | 1 | 0 | |a PARTICLE SIZE |
| 690 | 1 | 0 | |a PHOSPHOLIPID BILAYER |
| 690 | 1 | 0 | |a PROTEIN ASSEMBLY |
| 690 | 1 | 0 | |a SIMULATION |
| 700 | 1 | |a Risk, M.R. | |
| 700 | 1 | |a Vernier, P.T. | |
| 773 | 0 | |d Springer New York LLC, 2018 |g v. 251 |h pp. 237-245 |k n. 2 |p J. Membr. Biol. |x 00222631 |w (AR-BaUEN)CENRE-2377 |t Journal of Membrane Biology | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034788313&doi=10.1007%2fs00232-017-0002-y&partnerID=40&md5=1f63a528b941bb065de09a038e6b9127 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00232-017-0002-y |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00222631_v251_n2_p237_Fernandez |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222631_v251_n2_p237_Fernandez |y Registro en la Biblioteca Digital |
| 961 | |a paper_00222631_v251_n2_p237_Fernandez |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 77985 | ||