Activity of the Southern Annular Mode during 2015–2016 El Niño event and its impact on Southern Hemisphere climate anomalies

Previous studies documented that El Niño (EN) events are in general associated with negative phases of the Southern Annular Mode (SAM). EN 2015–2016 (EN15–16) was one of the three strongest events ever recorded. However, it was associated with a SAM positive phase of extreme intensity. Furthermore,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Vera, C.S
Otros Autores: Osman, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Ltd 2018
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09303caa a22009497a 4500
001 PAPER-17017
003 AR-BaUEN
005 20230518204807.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85041044599 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IJCLE 
100 1 |a Vera, C.S. 
245 1 0 |a Activity of the Southern Annular Mode during 2015–2016 El Niño event and its impact on Southern Hemisphere climate anomalies 
260 |b John Wiley and Sons Ltd  |c 2018 
270 1 0 |m Vera, C.S.; Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y NaturalesArgentina; email: carolina@cima.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Arblaster, J.M., Meehl, G.A., Contributions of external forcings to southern annular mode trends (2006) J. Clim., 19 (12), pp. 2896-2905 
504 |a Arblaster, J.M., Meehl, G.A., Karoly, D.J., Future climate change in the southern hemisphere: competing effects of ozone and greenhouse gases (2011) Geophys. Res. Lett., 38 (2), p. L02701 
504 |a Baldwin, M.P., Dunkerton, T.J., Stratospheric harbingers of anomalous weather regimes (2001) Science, 294 (5542), pp. 581-584 
504 |a Clem, K.R., Fogt, R.L., Varying roles of ENSO and SAM on the Antarctic Peninsula climate in austral spring (2013) J. Geophys. Res. Atmos., 118 (20), pp. 11481-11492 
504 |a Clem, K.R., Renwick, J.A., McGregor, J., Fogt, R.L., The relative influence of ENSO and SAM on Antarctic Peninsula climate (2016) J. Geophys. Res. Atmos., 121 (16), pp. 9324-9341. , https://doi.org/10.1002/2016JD025305 
504 |a (2015), http://www.cpc.ncep.noaa.gov/products/CDB/CDB_Archive_pdf/pdf_CDB_archive.shtml, Climate diagnostic bulletin. Near real-time ocean/atmosphere monitoring, assessments and prediction. Climate Prediction Center., (accessed 11 January 2018); Fogt, R.L., El Niño and Antarctica [in “state of the climate in 2015”] (2016) Bull. Am. Meteorol. Soc., 97 (8), p. S162 
504 |a Fogt, R.L., Bromwich, D.H., Decadal variability of the enso teleconnection to the high-latitude south pacific governed by coupling with the southern annular mode (2006) J. Clim., 19 (6), pp. 979-997 
504 |a Fogt, R.L., Bromwich, D.H., Hines, K.M., Understanding the SAM influence on the south pacific ENSO teleconnection (2011) Clim. Dyn., 36 (7), pp. 1555-1576 
504 |a Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Joseph, D., The NCEP/NCAR 40-year reanalysis project (1996) Bull. Am. Meteorol. Soc., 77 (3), pp. 437-471 
504 |a Kidson, J.W., Interannual variations in the southern hemisphere circulation (1988) J. Clim., 1 (12), pp. 1177-1198 
504 |a Kidson, J.W., Principal modes of southern hemisphere low-frequency variability obtained from NCEP-NCAR reanalyses (1999) J. Clim., 12 (9), pp. 2808-2830 
504 |a Marshall, G.J., Trends in the southern annular mode from observations and reanalyses (2003) J. Clim., 16 (24), pp. 4134-4143 
504 |a Mo, K.C., Relationships between low-frequency variability in the southern hemisphere and sea surface temperature anomalies (2000) J. Clim., 13 (20), pp. 3599-3610 
504 |a Nash, E.R., Strahan, S.E., Kramarova, N., Long, C.S., Pitts, M.C., Newman, P.A., Johnson, B., Braathen, G.O., Antarctic ozone hole [in “state of the climate in 2015”] (2016) Bull. Am. Meteorol. Soc., 97 (8), pp. S166-S172 
504 |a Silvestri, G., Vera, C., Nonstationary impacts of the southern annular mode on southern hemisphere climate (2009) J. Clim., 22 (22), pp. 6142-6148 
504 |a Vera, C., Silvestri, G., Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset (2009) Clim. Dyn., 32 (7), pp. 1003-1014 
504 |a Vera, C., Silvestri, G., Barros, V., Carril, A., Differences in El Niño response over the southern hemisphere (2004) J. Clim., 17 (9), pp. 1741-1753 
504 |a Wolter, K., Timlin, M.S., El Niño/southern oscillation behaviour since 1871 as diagnosed in an extended multivariate enso index (MEI.ext) (2011) Int. J. Climatol., 31 (7), pp. 1074-1087 
520 3 |a Previous studies documented that El Niño (EN) events are in general associated with negative phases of the Southern Annular Mode (SAM). EN 2015–2016 (EN15–16) was one of the three strongest events ever recorded. However, it was associated with a SAM positive phase of extreme intensity. Furthermore, while the negative linear relationship between ENSO and SAM during the most recent period (1986–2014) was significant and associated with a narrow uncertainty band, the combined condition of both climate patterns in the EN15–16 event was an outlier. The EN15–16 influence on the austral summer circulation anomalies at the extratropical and polar regions of the Southern Hemisphere was considerably altered by the strong SAM positive phase, which was evident not only at the troposphere but also at the stratosphere. Such circulation changes resulted in unusual regional impacts, such as negative anomalies of surface air temperature in western Antarctic Peninsula and negative precipitation anomalies in southeastern South America, ever recorded for previous strong EN events. Further research is needed to better understand the mechanisms explaining the SAM behaviour during 2015–2016 and its implication for climate predictability on seasonal timescales. © 2018 Royal Meteorological Society  |l eng 
536 |a Detalles de la financiación: Centro de Investigación Médica Aplicada, Universidad de Navarra 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Facultad de Ciencias Físicas y Matemáticas 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Centre National de la Recherche Scientifique 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Facultad de Ciencias Físicas y Matemáticas 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 112-20120100626CO, UBACyT 20020130100489BA, PIDDEF 
536 |a Detalles de la financiación: a Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina b Centro de Investigaciones del Mar y la Atmósfera (CIMA), Instituto Franco-Argentino del Clima y sus Impactos (UMI-IFAECI)/CNRS, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina 
536 |a Detalles de la financiación: * Correspondence to: C. S. Vera, Centro de Investigaciones del Mar y la Atmósfera, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 2, Zip: 1432, Buenos Aires, Argentina. E-mail: carolina@cima.fcen.uba.ar 
536 |a Detalles de la financiación: The research was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) PIP 112-20120100626CO, UBACyT 20020130100489BA, PIDDEF 2014/2017 Nro 15, Belmont Forum/ANR-15-JCL/-0002-01 CLIMAX. M.O. was supported by a postdoctoral grant from CONICET, Argentina. 
593 |a Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina 
593 |a Centro de Investigaciones del Mar y la Atmósfera (CIMA), Instituto Franco-Argentino del Clima y sus Impactos (UMI-IFAECI)/CNRS, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a ENSO 
690 1 0 |a PSA PATTERNS 
690 1 0 |a SAM 
690 1 0 |a NICKEL 
690 1 0 |a CIRCULATION ANOMALIES 
690 1 0 |a CLIMATE PREDICTABILITY 
690 1 0 |a ENSO 
690 1 0 |a PRECIPITATION ANOMALIES 
690 1 0 |a PSA PATTERNS 
690 1 0 |a SURFACE AIR TEMPERATURES 
690 1 0 |a WESTERN ANTARCTIC PENINSULA 
690 1 0 |a CLIMATOLOGY 
690 1 0 |a AIR-SEA INTERACTION 
690 1 0 |a ARCTIC OSCILLATION 
690 1 0 |a ATMOSPHERIC CIRCULATION 
690 1 0 |a CLIMATE PREDICTION 
690 1 0 |a CLIMATOLOGY 
690 1 0 |a EL NINO 
690 1 0 |a EL NINO-SOUTHERN OSCILLATION 
690 1 0 |a SOUTHERN HEMISPHERE 
690 1 0 |a SUMMER 
651 4 |a SOUTHEASTERN SOUTH AMERICA 
651 4 |a SOUTHEASTERN SOUTH AMERICA 
700 1 |a Osman, M. 
773 0 |d John Wiley and Sons Ltd, 2018  |g v. 38  |h pp. e1288-e1295  |p Int. J. Climatol.  |x 08998418  |w (AR-BaUEN)CENRE-40  |t International Journal of Climatology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041044599&doi=10.1002%2fjoc.5419&partnerID=40&md5=3776ec5c4d66cab2f4dec15a5cad35a5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/joc.5419  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08998418_v38_n_pe1288_Vera  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08998418_v38_n_pe1288_Vera  |y Registro en la Biblioteca Digital 
961 |a paper_08998418_v38_n_pe1288_Vera  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 77970