An Earth-sized exoplanet with a Mercury-like composition

Earth, Venus, Mars and some extrasolar terrestrial planets 1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle 2 . At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Santerne, A.
Otros Autores: Brugger, B., Armstrong, D.J, Adibekyan, V., Lillo-Box, J., Gosselin, H., Aguichine, A., Almenara, J.-M, Barrado, D., Barros, S.C.C, Bayliss, D., Boisse, I., Bonomo, A.S, Bouchy, F., Brown, D.J.A, Deleuil, M., Delgado Mena, E., Demangeon, O., Díaz, R.F, Doyle, A., Dumusque, X., Faedi, F., Faria, J.P, Figueira, P., Foxell, E., Giles, H., Hébrard, G., Hojjatpanah, S., Hobson, M., Jackman, J., King, G., Kirk, J., Lam, K.W.F, Ligi, R., Lovis, C., Louden, T., McCormac, J., Mousis, O., Neal, J.J, Osborn, H.P, Pepe, F., Pollacco, D., Santos, N.C, Sousa, S.G, Udry, S., Vigan, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Nature Publishing Group 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 22876caa a22021257a 4500
001 PAPER-16980
003 AR-BaUEN
005 20230518204804.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85046361600 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Santerne, A. 
245 1 3 |a An Earth-sized exoplanet with a Mercury-like composition 
260 |b Nature Publishing Group  |c 2018 
270 1 0 |m Santerne, A.; Aix Marseille Univ., CNRS, LAM, Laboratoire d'Astrophysique de MarseilleFrance; email: alexandre.santerne@lam.fr 
506 |2 openaire  |e Política editorial 
504 |a Dressing, C.D., The mass of Kepler-93b and the composition of terrestrial planets (2015) Astrophys. J, 800, p. 135 
504 |a Stacey, F.D., High pressure equations of state and planetary interiors (2005) Rep. Prog. Phys, 68, p. 341 
504 |a Smith, D.E., Gravity field and internal structure of Mercury from MESSENGER (2012) Science, 336, pp. 214-217 
504 |a Benz, W., Anic, A., Horner, J., Whitby, J.A., (2008) Mercury, 26, pp. 7-20. , (eds Balogh, A. et al) , Space Sciences Series of ISSI, Springer, New York, USA 
504 |a Cameron, A., The partial volatilization of Mercury (1985) Icarus, 64, pp. 285-294 
504 |a Wurm, G., Trieloff, M., Rauer, H., Photophoretic separation of metals and silicates: The formation of Mercury-like planets and metal depletion in chondrites (2013) Astrophys. J, 769, p. 78 
504 |a Thiabaud, A., Marboeuf, U., Alibert, Y., Leya, I., Mezger, K., Elemental ratios in stars vs planets (2015) Astron. Astrophys, 580, p. A30 
504 |a Benkhoff, J., BepiColombo-comprehensive exploration of Mercury: Mission overview and science goals (2010) Planet. Space. Sci, 58, pp. 2-20 
504 |a Barros, S., Demangeon, O., Deleuil, M., New planetary and eclipsing binary candidates from campaigns 1-6 of the K2 mission (2016) Astron. Astrophys, 594, p. A100 
504 |a Huber, D., The K2 Ecliptic Plane Input Catalog (EPIC) and stellar classifications of 138,600 targets in campaigns 1-8 (2016) Astrophys. J. Suppl. Ser, 224, p. 2 
504 |a Santos, N., SWEET-Cat: A catalogue of parameters for stars with exoplanets-I new atmospheric parameters and masses for 48 stars with planets (2013) Astron. Astrophys, 556, p. A150 
504 |a Dumusque, X., Boisse, I., Santos, N., SOAP 2.0: A tool to estimate the photometric and radial velocity variations induced by stellar spots and plages (2014) Astrophys. J, 796, p. 132 
504 |a Daz, R.F., PASTIS: Bayesian extrasolar planet validation-I general framework, models, and performance (2014) Mon. Not. R. Astron. Soc, 441, pp. 983-1004 
504 |a Dumusque, X., Radial-velocity fitting challenge-II first results of the analysis of the data set (2017) Astron. Astrophys, 598, p. A133 
504 |a Pepe, F., An Earth-sized planet with an Earth-like density (2013) Nature, 503, pp. 377-380 
504 |a Berta-Thompson, Z.K., A rocky planet transiting a nearby low-mass star (2015) Nature, 527, pp. 204-207 
504 |a Gillon, M., Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 (2017) Nature, 542, pp. 456-460 
504 |a Grimm, S.L., (2018) The Nature of the TRAPPIST-1 Exoplanets, , https://arxiv.org/abs/1802.01377 
504 |a Brugger, B., Mousis, O., Deleuil, M., Deschamps, F., Constraints on super-Earth interiors from stellar abundances (2017) Astrophys. J, 850, p. 93 
504 |a Leger, A., The extreme physical properties of the CoRoT-7b super-Earth (2011) Icarus, 213, pp. 1-11 
504 |a Dittmann, J.A., A temperate rocky super-Earth transiting a nearby cool star (2017) Nature, 544, pp. 333-336 
504 |a Lanza, A., Star-planet magnetic interaction and evaporation of planetary atmospheres (2013) Astron. Astrophys, 557, p. A31 
504 |a Strugarek, A., Assessing magnetic torques and energy fluxes in close-in star-planet systems (2016) Astrophys. J, 833, p. 140 
504 |a Garraffo, C., Drake, J.J., Cohen, O., Alvarado-Gomez, J.D., Moschou, S.P., (2017) The Threatening Environment of the TRAPPIST-1 Planets, , https://arxiv.org/abs/1706.04617 
504 |a Mura, A., Comet-like tail-formation of exospheres of hot rocky exoplanets: Possible implications for CoRoT-7b (2011) Icarus, 211, pp. 1-9 
504 |a Moutou, C., Donati, J.-F., Lin, D., Laine, R., Hatzes, A., The magnetic properties of the star Kepler-78 (2016) Mon. Not. R. Astron. Soc, 459, pp. 1993-2007 
504 |a Sinukoff, E., K2-66b and K2-106b: Two extremely hot sub-Neptune-size planets with high densities (2017) Astron. J, 153, p. 271 
504 |a Guenther, E., (2017) K2-106, A System Containing A Metal-rich Planet and A Planet of Lower Density, , https://arxiv.org/abs/1705.04163 
504 |a Dorn, C., A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes (2017) Astron. Astrophys, 597, p. A37 
504 |a Rauer, H., The PLATO 2.0 mission (2014) Exp. Astron, 38, pp. 249-330 
504 |a Kovacs, G., Zucker, S., Mazeh, T., A box-fitting algorithm in the search for periodic transits (2002) Astron. Astrophys, 391, pp. 369-377 
504 |a Armstrong, D.J., Pollacco, D., Santerne, A., Transit shapes and selforganizing maps as a tool for ranking planetary candidates: Application to Kepler and K2 (2017) Mon. Not. R. Astron. Soc, 465, pp. 2634-2642 
504 |a Mayor, M., Setting new standards with HARPS (2003) The Messenger, 114, pp. 20-24 
504 |a Baranne, A., ELODIE: A spectrograph for accurate radial velocity measurements (1996) Astron. Astrophys. Suppl. Ser, 119, pp. 373-390 
504 |a Santerne, A., PASTIS: Bayesian extrasolar planet validation-II constraining exoplanet blend scenarios using spectroscopic diagnoses (2015) Mon. Not. R. Astron. Soc, 451, pp. 2337-2351 
504 |a Bouchy, F., Pepe, F., Queloz, D., Fundamental photon noise limit to radial velocity measurements (2001) Astron. Astrophys, 374, pp. 733-739 
504 |a Gomes Silva, J., Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program i Comparison of activity indices (2011) Astron. Astrophys, 534, p. 30 
504 |a Noyes, R., Hartmann, L., Baliunas, S., Duncan, D., Vaughan, A., Rotation, convection, and magnetic activity in lower main-sequence stars (1984) Astrophys. J, 279, pp. 763-777 
504 |a Sneden, C., Carbon and nitrogen abundances in metal-poor stars (1974) Astrophys. J, 189, pp. 493-507 
504 |a Kurucz, R., (1993) ATLAS9 Stellar Atmosphere Programs and 2 Km/s Grid CD-ROM No. 13, , (Smithsonian Astrophysical Observatory,) 
504 |a Sousa, S., Santos, N., Adibekyan, V., Delgado-Mena, E., Israelian, G., ARES v2: New features and improved performance (2015) Astron. Astrophys, 577, p. A67 
504 |a Mortier, A., Sousa, S., Adibekyan, V.Z., Brandao, I., Santos, N., Correcting the spectroscopic surface gravity using transits and asteroseismology-no significant effect on temperatures or metallicities with ARES and MOOG in local thermodynamic equilibrium (2014) Astron. Astrophys, 572, p. A95 
504 |a Adibekyan, V.Z., Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program-Galactic stellar populations and planets (2012) Astron. Astrophys, 545, p. A32 
504 |a Delgado Mena, E., Li depletion in solar analogues with exoplanets-extending the sample (2014) Astron. Astrophys, 562, p. A92 
504 |a Maia, M.T., The solar twin planet search-III the [Y/Mg] clock: Estimating stellar ages of solar-type stars (2016) Astron. Astrophys, 590, p. A32 
504 |a Hormuth, F., Brandner, W., Hippler, S., Henning, T., AstraLux-The calar alto 2.2-m telescope lucky imaging camera (2008) J. Phys. Conf. Ser, 131, p. 012051 
504 |a Lillo-Box, J., Barrado, D., Bouy, H., High-resolution imaging of Kepler planet host candidates-A comprehensive comparison of different techniques (2014) Astron. Astrophys, 566, p. A103 
504 |a Vanderburg, A., Johnson, J.A., A technique for extracting highly precise photometry for the two-wheeled Kepler mission (2014) Publ. Astron. Soc. Pac, 126, p. 948 
504 |a Rasmussen, C.E., Williams, C.K., (2006) Gaussian Processes for Machine Learning, 1. , (MIT Press, Cambridge, MA, USA,) 
504 |a Henden, A., Munari, U., The APASS all-sky, multi-epoch BVgri photometric survey (2014) Contrib. Astron. Obs. S, 43, pp. 518-522 
504 |a Cutri, R., AllWISE Data Release (Cutri+ 2013), , http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=%20ALLWISE, (accessed 17 September 2017) 
504 |a Southworth, J., Homogeneous studies of transiting extrasolar planets-I light-curve analyses (2008) Mon. Not. R. Astron. Soc, 386, pp. 1644-1666 
504 |a Kipping, D.M., Binning is sinning: Morphological light-curve distortions due to finite integration time (2010) Mon. Not. R. Astron. Soc, 408, pp. 1758-1769 
504 |a Allard, F., Homeier, D., Freytag, B., Models of very-low-mass stars, brown dwarfs and exoplanets (2012) Phil. Trans. R. Soc. A, 370, pp. 2765-2777 
504 |a Kipping, D.M., Characterizing distant worlds with asterodensity profiling (2014) Mon. Not. R. Astron. Soc, 440, pp. 2164-2184 
504 |a Dotter, A., The dartmouth stellar evolution database (2008) Astrophys. J. Suppl. Ser, 178, p. 89 
504 |a Bressan, A., PARSEC: Stellar tracks and isochrones with the Padova and TRieste Stellar Evolution Code (2012) Mon. Not. R. Astron. Soc, 427, pp. 127-145 
504 |a Claret, A., Bloemen, S., Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems (2011) Astron. Astrophys, 529, p. A75 
504 |a Brooks, S., Giudici, P., Philippe, A., Nonparametric convergence assessment for MCMC model selection (2003) J. Comput. Graph. Stat, 12, pp. 1-22 
504 |a Santerne, A., SOPHIE velocimetry of Kepler transit candidates-XII KOI-1257 b: A highly eccentric three-month period transiting exoplanet (2014) Astron. Astrophys, 571, p. A37 
504 |a Bayliss, D., EPIC 201702477b: A transiting brown dwarf from K2 in a 41 day orbit (2016) Astron. J, 153, p. 15 
504 |a Osborn, H., K2-110 b: A massive mini-Neptune exoplanet (2017) Astron. Astrophys, 604, p. A19 
504 |a Hatzes, A.P., The mass of CoRoT-7b (2011) Astrophys. J, 743, p. 75 
504 |a Haywood, R., Planets and stellar activity: Hide and seek in the CoRoT-7 system (2014) Mon. Not. R. Astron. Soc, 443, pp. 2517-2531 
504 |a Anglada-Escude, G., Tuomi, M., Comment on 'stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581 (2015) Science, 347, p. 1080 
504 |a Lissauer, J.J., Validation of Kepler's multiple planet candidates II Refined statistical framework and descriptions of systems of special interest (2014) Astrophys. J, 784, p. 44 
504 |a Sotin, C., Grasset, O., Mocquet, A., Mass-radius curve for extrasolar Earth-like planets and ocean planets (2007) Icarus, 191, pp. 337-351 
504 |a Badro, J., Cote, A.S., Brodholt, J.P., A seismologically consistent compositional model of Earth's core (2014) Proc. Natl Acad. Sci. USA, 111, pp. 7542-7545 
504 |a Lebrun, T., Thermal evolution of an early magma ocean in interaction with the atmosphere (2013) J. Geophys. Res.: Planets, 118, pp. 1155-1176 
504 |a Lodders, K., (2010) Principles and Perspectives in Cosmochemistry, pp. 379-417. , (eds Goswami, A. &Reddy, B) (Astrophysics and Space Science Proc., Springer, Berlin, Germany, ) 
504 |a Allegre, C.J., Poirier, J.-P., Humler, E., Hofmann, A.W., The chemical composition of the Earth (1995) Earth. Planet. Sci. Lett, 134, pp. 515-526 
504 |a Grevesse, N., Asplund, M., Sauval, A., The solar chemical composition (2007) Space. Sci. Rev, 130, pp. 105-114 
504 |a Asplund, M., Grevesse, N., Sauval, A.J., Scott, P., The chemical composition of the Sun (2009) Annu. Rev. Astron. Astrophys, 47, pp. 481-522 
504 |a Owen, J.E., Jackson, A.P., Planetary evaporation by UV and X-ray radiation: Basic hydrodynamics (2012) Mon. Not. R. Astron. Soc, 425, pp. 2931-2947 
504 |a Pallavicini, R., Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity (1981) Astrophys. J, 248, pp. 279-290 
504 |a Ochsenbein, F., Bauer, P., Marcout, J., The VizieR database of astronomical catalogues (2000) Astron. Astrophys. Suppl. Ser, 143, pp. 23-32 
520 3 |a Earth, Venus, Mars and some extrasolar terrestrial planets 1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle 2 . At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle 3 . Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact 4 , mantle evaporation 5 or the depletion of silicate at the inner edge of the protoplanetary disk 6 . These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry 7 . This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo 8 ) into the global context of the formation and evolution of solar and extrasolar terrestrial planets. © 2018 The Author(s).  |l eng 
536 |a Detalles de la financiación: National Aeronautics and Space Administration 
536 |a Detalles de la financiación: FP7-COFUND 
536 |a Detalles de la financiación: Fuel Cell Technologies Program, FCT, PTDC/FIS-AST/7073/2014, POCI–01–0145-FEDER–016886, POCI-01-0145-FEDER-016880, IF/00650/2015/CP1273/CT0001, UID/FIS/04434/2013 & POCI–01–0145-FEDER–007672, IF/01312/2014/CP1215/CT0004, IF/00849/2015/ CP1273/CT0003, PTDC/FIS-AST/1526/2014 
536 |a Detalles de la financiación: European Commission 
536 |a Detalles de la financiación: Fundação para a Ciência e a Tecnologia 
536 |a Detalles de la financiación: ESP2015-65712-C5-1-R 
536 |a Detalles de la financiación: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung 
536 |a Detalles de la financiación: IF/00028/2014/ CP1215/CT0002, PD/ BD/128119/2016, PD/BD/52700/2014, SFRH/BD/93848/2013 
536 |a Detalles de la financiación: Qatar National Research Fund, QNRF-NPRP-X-019-1 
536 |a Detalles de la financiación: California Institute of Technology, Caltech 
536 |a Detalles de la financiación: University of Massachusetts, UMASS 
536 |a Detalles de la financiación: ST/P000495/1 
536 |a Detalles de la financiación: National Science Foundation 
536 |a Detalles de la financiación: IF/00169/2012/CP0150/CT0002 
536 |a Detalles de la financiación: Centre National d’Etudes Spatiales, CNES 
536 |a Detalles de la financiación: University of Warwick 
536 |a Detalles de la financiación: IF/01037/2013/ CP1191/CT0001 
536 |a Detalles de la financiación: University of California, Los Angeles 
536 |a Detalles de la financiación: We are grateful to the HARPS observers who conducted part of the visitor-mode observations at La Silla Observatory: R. I. Bustos, N. Astudillo, A. Wyttenbach, E. Linder, X. Bonfils, E. Hébrard and A. Suarez. A.S. thanks E. Hugot for comments on the manuscript. This publication is based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 198.C-0168. This publication makes use of The Data & Analysis Center for Exoplanets (DACE), which is a facility based at the University of Geneva (CH) dedicated to extrasolar planet data visualization, exchange and analysis. DACE is a platform of the Swiss National Centre of Competence in Research (NCCR) PlanetS, federating the Swiss expertise in exoplanet research. The DACE platform is available at https://dace. unige.ch. This research has made use of the NASA (National Aeronautics and Space Administration) Exoplanet Archive, which is operated by the California Institute of Technology, under contract with NASA under the Exoplanet Exploration Program. This research has made use of the VizieR catalogue access tool, CDS (http://vizier.u-strasbg.fr/ vizier/surveys.htx). The original description of the VizieR service was published in ref. 76. This publication makes use of data products from the Two-Micron All-Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the National Science Foundation. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by NASA. The Porto group acknowledges support from Fundação para a Ciência e a Tecnologia (FCT) through national funds and from FEDER through COMPETE2020 by the grants UID/FIS/04434/2013 & POCI–01–0145-FEDER–007672, PTDC/FIS-AST/1526/2014 & POCI–01–0145-FEDER–016886 and PTDC/FIS-AST/7073/2014 & POCI-01-0145-FEDER-016880. FCT is further acknowledged through the Investigador FCT contracts IF/01312/2014/CP1215/CT0004 (S.C.C.B.), IF/00849/2015/ CP1273/CT0003 (E.D.M.), IF/00650/2015/CP1273/CT0001 (V.A.), IF/01037/2013/ CP1191/CT0001 (P.F.), IF/00169/2012/CP0150/CT0002 (N.C.S.) and IF/00028/2014/ CP1215/CT0002 (S.G.S.) and for the fellowships SFRH/BD/93848/2013 (J.P.F.), PD/ BD/128119/2016 (S.H.) and PD/BD/52700/2014 (J.J.N.), which are funded by FCT (Portugal) and POPH/FSE (EC). J.L.-B. acknowledges support from the Marie Curie Actions of the European Commission (FP7-COFUND). D.Bar. has been supported by the Spanish grant ESP2015-65712-C5-1-R. D.J.A. is funded under STFC consolidated grant reference ST/P000495/1. D.J.A.B. acknowledges support from the University of Warwick and the UKSA. E.F. is funded by the Qatar National Research Foundation (programme QNRF-NPRP-X-019-1). X.D. is grateful to the Society in Science–The Branco Weiss Fellowship for its financial support. R.L. thanks CNES for financial support through its postdoctoral programme. The project leading to this publication has received funding from Excellence Initiative of Aix-Marseille University–A*MIDEX, a French Investissements d’Avenir programme. The French group acknowledges financial support from the French Programme National de Planétologie (PNP, INSU). This work has been carried out in the frame of the NCCR PlanetS supported by the Swiss National Science Foundation (SNSF). 
593 |a Aix Marseille Univ., CNRS, LAM, Laboratoire d'Astrophysique de Marseille, Marseille, France 
593 |a Department of Physics, University of Warwick, Coventry, United Kingdom 
593 |a Instituto de Astrofísica e Ciências Do Espaço, Universidade Do Porto, CAUP, Porto, Portugal 
593 |a European Southern Observatory (ESO), Santiago, Chile 
593 |a Université de Toulouse, UPS-OMP, IRAP, Toulouse, France 
593 |a Paris-Saclay Université, ENS Cachan, Cachan, France 
593 |a Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland 
593 |a Depto. de Astrofísica, Centro de Astrobiología (CSIC-INTA), Madrid, Spain 
593 |a INAF - Osservatorio Astrofisico di Torino, Pino Torinese, Italy 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina 
593 |a CONICET - Universidad de Buenos Aires, Instituto de Astronomía y Física Del Espacio (IAFE), Buenos Aires, Argentina 
593 |a INAF - Osservatorio Atrofisico di Catania, Catania, Italy 
593 |a Departamento de Física e Astronomia, Faculdade de Ciencias, Universidade Do Porto, Porto, Portugal 
593 |a Institut d'Astrophysique de Paris, UMR7095 CNRS, Universite Pierre and Marie Curie, Paris, France 
593 |a Aix Marseille Univ., CNRS, OHP, Observatoire de Haute Provence, Saint Michel l'Observatoire, France 
700 1 |a Brugger, B. 
700 1 |a Armstrong, D.J. 
700 1 |a Adibekyan, V. 
700 1 |a Lillo-Box, J. 
700 1 |a Gosselin, H. 
700 1 |a Aguichine, A. 
700 1 |a Almenara, J.-M. 
700 1 |a Barrado, D. 
700 1 |a Barros, S.C.C. 
700 1 |a Bayliss, D. 
700 1 |a Boisse, I. 
700 1 |a Bonomo, A.S. 
700 1 |a Bouchy, F. 
700 1 |a Brown, D.J.A. 
700 1 |a Deleuil, M. 
700 1 |a Delgado Mena, E. 
700 1 |a Demangeon, O. 
700 1 |a Díaz, R.F. 
700 1 |a Doyle, A. 
700 1 |a Dumusque, X. 
700 1 |a Faedi, F. 
700 1 |a Faria, J.P. 
700 1 |a Figueira, P. 
700 1 |a Foxell, E. 
700 1 |a Giles, H. 
700 1 |a Hébrard, G. 
700 1 |a Hojjatpanah, S. 
700 1 |a Hobson, M. 
700 1 |a Jackman, J. 
700 1 |a King, G. 
700 1 |a Kirk, J. 
700 1 |a Lam, K.W.F. 
700 1 |a Ligi, R. 
700 1 |a Lovis, C. 
700 1 |a Louden, T. 
700 1 |a McCormac, J. 
700 1 |a Mousis, O. 
700 1 |a Neal, J.J. 
700 1 |a Osborn, H.P. 
700 1 |a Pepe, F. 
700 1 |a Pollacco, D. 
700 1 |a Santos, N.C. 
700 1 |a Sousa, S.G. 
700 1 |a Udry, S. 
700 1 |a Vigan, A. 
773 0 |d Nature Publishing Group, 2018  |g v. 2  |h pp. 393-400  |k n. 5  |p Nat. Astron.  |x 23973366  |t Nature Astronomy 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046361600&doi=10.1038%2fs41550-018-0420-5&partnerID=40&md5=1b2b56ae1e9c6120bb2cd0869b68c172  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1038/s41550-018-0420-5  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_23973366_v2_n5_p393_Santerne  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_23973366_v2_n5_p393_Santerne  |y Registro en la Biblioteca Digital 
961 |a paper_23973366_v2_n5_p393_Santerne  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77933