An Earth-sized exoplanet with a Mercury-like composition
Earth, Venus, Mars and some extrasolar terrestrial planets 1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle 2 . At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Nature Publishing Group
2018
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 22876caa a22021257a 4500 | ||
|---|---|---|---|
| 001 | PAPER-16980 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204804.0 | ||
| 008 | 190410s2018 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-85046361600 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Santerne, A. | |
| 245 | 1 | 3 | |a An Earth-sized exoplanet with a Mercury-like composition |
| 260 | |b Nature Publishing Group |c 2018 | ||
| 270 | 1 | 0 | |m Santerne, A.; Aix Marseille Univ., CNRS, LAM, Laboratoire d'Astrophysique de MarseilleFrance; email: alexandre.santerne@lam.fr |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Dressing, C.D., The mass of Kepler-93b and the composition of terrestrial planets (2015) Astrophys. J, 800, p. 135 | ||
| 504 | |a Stacey, F.D., High pressure equations of state and planetary interiors (2005) Rep. Prog. Phys, 68, p. 341 | ||
| 504 | |a Smith, D.E., Gravity field and internal structure of Mercury from MESSENGER (2012) Science, 336, pp. 214-217 | ||
| 504 | |a Benz, W., Anic, A., Horner, J., Whitby, J.A., (2008) Mercury, 26, pp. 7-20. , (eds Balogh, A. et al) , Space Sciences Series of ISSI, Springer, New York, USA | ||
| 504 | |a Cameron, A., The partial volatilization of Mercury (1985) Icarus, 64, pp. 285-294 | ||
| 504 | |a Wurm, G., Trieloff, M., Rauer, H., Photophoretic separation of metals and silicates: The formation of Mercury-like planets and metal depletion in chondrites (2013) Astrophys. J, 769, p. 78 | ||
| 504 | |a Thiabaud, A., Marboeuf, U., Alibert, Y., Leya, I., Mezger, K., Elemental ratios in stars vs planets (2015) Astron. Astrophys, 580, p. A30 | ||
| 504 | |a Benkhoff, J., BepiColombo-comprehensive exploration of Mercury: Mission overview and science goals (2010) Planet. Space. Sci, 58, pp. 2-20 | ||
| 504 | |a Barros, S., Demangeon, O., Deleuil, M., New planetary and eclipsing binary candidates from campaigns 1-6 of the K2 mission (2016) Astron. Astrophys, 594, p. A100 | ||
| 504 | |a Huber, D., The K2 Ecliptic Plane Input Catalog (EPIC) and stellar classifications of 138,600 targets in campaigns 1-8 (2016) Astrophys. J. Suppl. Ser, 224, p. 2 | ||
| 504 | |a Santos, N., SWEET-Cat: A catalogue of parameters for stars with exoplanets-I new atmospheric parameters and masses for 48 stars with planets (2013) Astron. Astrophys, 556, p. A150 | ||
| 504 | |a Dumusque, X., Boisse, I., Santos, N., SOAP 2.0: A tool to estimate the photometric and radial velocity variations induced by stellar spots and plages (2014) Astrophys. J, 796, p. 132 | ||
| 504 | |a Daz, R.F., PASTIS: Bayesian extrasolar planet validation-I general framework, models, and performance (2014) Mon. Not. R. Astron. Soc, 441, pp. 983-1004 | ||
| 504 | |a Dumusque, X., Radial-velocity fitting challenge-II first results of the analysis of the data set (2017) Astron. Astrophys, 598, p. A133 | ||
| 504 | |a Pepe, F., An Earth-sized planet with an Earth-like density (2013) Nature, 503, pp. 377-380 | ||
| 504 | |a Berta-Thompson, Z.K., A rocky planet transiting a nearby low-mass star (2015) Nature, 527, pp. 204-207 | ||
| 504 | |a Gillon, M., Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 (2017) Nature, 542, pp. 456-460 | ||
| 504 | |a Grimm, S.L., (2018) The Nature of the TRAPPIST-1 Exoplanets, , https://arxiv.org/abs/1802.01377 | ||
| 504 | |a Brugger, B., Mousis, O., Deleuil, M., Deschamps, F., Constraints on super-Earth interiors from stellar abundances (2017) Astrophys. J, 850, p. 93 | ||
| 504 | |a Leger, A., The extreme physical properties of the CoRoT-7b super-Earth (2011) Icarus, 213, pp. 1-11 | ||
| 504 | |a Dittmann, J.A., A temperate rocky super-Earth transiting a nearby cool star (2017) Nature, 544, pp. 333-336 | ||
| 504 | |a Lanza, A., Star-planet magnetic interaction and evaporation of planetary atmospheres (2013) Astron. Astrophys, 557, p. A31 | ||
| 504 | |a Strugarek, A., Assessing magnetic torques and energy fluxes in close-in star-planet systems (2016) Astrophys. J, 833, p. 140 | ||
| 504 | |a Garraffo, C., Drake, J.J., Cohen, O., Alvarado-Gomez, J.D., Moschou, S.P., (2017) The Threatening Environment of the TRAPPIST-1 Planets, , https://arxiv.org/abs/1706.04617 | ||
| 504 | |a Mura, A., Comet-like tail-formation of exospheres of hot rocky exoplanets: Possible implications for CoRoT-7b (2011) Icarus, 211, pp. 1-9 | ||
| 504 | |a Moutou, C., Donati, J.-F., Lin, D., Laine, R., Hatzes, A., The magnetic properties of the star Kepler-78 (2016) Mon. Not. R. Astron. Soc, 459, pp. 1993-2007 | ||
| 504 | |a Sinukoff, E., K2-66b and K2-106b: Two extremely hot sub-Neptune-size planets with high densities (2017) Astron. J, 153, p. 271 | ||
| 504 | |a Guenther, E., (2017) K2-106, A System Containing A Metal-rich Planet and A Planet of Lower Density, , https://arxiv.org/abs/1705.04163 | ||
| 504 | |a Dorn, C., A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes (2017) Astron. Astrophys, 597, p. A37 | ||
| 504 | |a Rauer, H., The PLATO 2.0 mission (2014) Exp. Astron, 38, pp. 249-330 | ||
| 504 | |a Kovacs, G., Zucker, S., Mazeh, T., A box-fitting algorithm in the search for periodic transits (2002) Astron. Astrophys, 391, pp. 369-377 | ||
| 504 | |a Armstrong, D.J., Pollacco, D., Santerne, A., Transit shapes and selforganizing maps as a tool for ranking planetary candidates: Application to Kepler and K2 (2017) Mon. Not. R. Astron. Soc, 465, pp. 2634-2642 | ||
| 504 | |a Mayor, M., Setting new standards with HARPS (2003) The Messenger, 114, pp. 20-24 | ||
| 504 | |a Baranne, A., ELODIE: A spectrograph for accurate radial velocity measurements (1996) Astron. Astrophys. Suppl. Ser, 119, pp. 373-390 | ||
| 504 | |a Santerne, A., PASTIS: Bayesian extrasolar planet validation-II constraining exoplanet blend scenarios using spectroscopic diagnoses (2015) Mon. Not. R. Astron. Soc, 451, pp. 2337-2351 | ||
| 504 | |a Bouchy, F., Pepe, F., Queloz, D., Fundamental photon noise limit to radial velocity measurements (2001) Astron. Astrophys, 374, pp. 733-739 | ||
| 504 | |a Gomes Silva, J., Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program i Comparison of activity indices (2011) Astron. Astrophys, 534, p. 30 | ||
| 504 | |a Noyes, R., Hartmann, L., Baliunas, S., Duncan, D., Vaughan, A., Rotation, convection, and magnetic activity in lower main-sequence stars (1984) Astrophys. J, 279, pp. 763-777 | ||
| 504 | |a Sneden, C., Carbon and nitrogen abundances in metal-poor stars (1974) Astrophys. J, 189, pp. 493-507 | ||
| 504 | |a Kurucz, R., (1993) ATLAS9 Stellar Atmosphere Programs and 2 Km/s Grid CD-ROM No. 13, , (Smithsonian Astrophysical Observatory,) | ||
| 504 | |a Sousa, S., Santos, N., Adibekyan, V., Delgado-Mena, E., Israelian, G., ARES v2: New features and improved performance (2015) Astron. Astrophys, 577, p. A67 | ||
| 504 | |a Mortier, A., Sousa, S., Adibekyan, V.Z., Brandao, I., Santos, N., Correcting the spectroscopic surface gravity using transits and asteroseismology-no significant effect on temperatures or metallicities with ARES and MOOG in local thermodynamic equilibrium (2014) Astron. Astrophys, 572, p. A95 | ||
| 504 | |a Adibekyan, V.Z., Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program-Galactic stellar populations and planets (2012) Astron. Astrophys, 545, p. A32 | ||
| 504 | |a Delgado Mena, E., Li depletion in solar analogues with exoplanets-extending the sample (2014) Astron. Astrophys, 562, p. A92 | ||
| 504 | |a Maia, M.T., The solar twin planet search-III the [Y/Mg] clock: Estimating stellar ages of solar-type stars (2016) Astron. Astrophys, 590, p. A32 | ||
| 504 | |a Hormuth, F., Brandner, W., Hippler, S., Henning, T., AstraLux-The calar alto 2.2-m telescope lucky imaging camera (2008) J. Phys. Conf. Ser, 131, p. 012051 | ||
| 504 | |a Lillo-Box, J., Barrado, D., Bouy, H., High-resolution imaging of Kepler planet host candidates-A comprehensive comparison of different techniques (2014) Astron. Astrophys, 566, p. A103 | ||
| 504 | |a Vanderburg, A., Johnson, J.A., A technique for extracting highly precise photometry for the two-wheeled Kepler mission (2014) Publ. Astron. Soc. Pac, 126, p. 948 | ||
| 504 | |a Rasmussen, C.E., Williams, C.K., (2006) Gaussian Processes for Machine Learning, 1. , (MIT Press, Cambridge, MA, USA,) | ||
| 504 | |a Henden, A., Munari, U., The APASS all-sky, multi-epoch BVgri photometric survey (2014) Contrib. Astron. Obs. S, 43, pp. 518-522 | ||
| 504 | |a Cutri, R., AllWISE Data Release (Cutri+ 2013), , http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=%20ALLWISE, (accessed 17 September 2017) | ||
| 504 | |a Southworth, J., Homogeneous studies of transiting extrasolar planets-I light-curve analyses (2008) Mon. Not. R. Astron. Soc, 386, pp. 1644-1666 | ||
| 504 | |a Kipping, D.M., Binning is sinning: Morphological light-curve distortions due to finite integration time (2010) Mon. Not. R. Astron. Soc, 408, pp. 1758-1769 | ||
| 504 | |a Allard, F., Homeier, D., Freytag, B., Models of very-low-mass stars, brown dwarfs and exoplanets (2012) Phil. Trans. R. Soc. A, 370, pp. 2765-2777 | ||
| 504 | |a Kipping, D.M., Characterizing distant worlds with asterodensity profiling (2014) Mon. Not. R. Astron. Soc, 440, pp. 2164-2184 | ||
| 504 | |a Dotter, A., The dartmouth stellar evolution database (2008) Astrophys. J. Suppl. Ser, 178, p. 89 | ||
| 504 | |a Bressan, A., PARSEC: Stellar tracks and isochrones with the Padova and TRieste Stellar Evolution Code (2012) Mon. Not. R. Astron. Soc, 427, pp. 127-145 | ||
| 504 | |a Claret, A., Bloemen, S., Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems (2011) Astron. Astrophys, 529, p. A75 | ||
| 504 | |a Brooks, S., Giudici, P., Philippe, A., Nonparametric convergence assessment for MCMC model selection (2003) J. Comput. Graph. Stat, 12, pp. 1-22 | ||
| 504 | |a Santerne, A., SOPHIE velocimetry of Kepler transit candidates-XII KOI-1257 b: A highly eccentric three-month period transiting exoplanet (2014) Astron. Astrophys, 571, p. A37 | ||
| 504 | |a Bayliss, D., EPIC 201702477b: A transiting brown dwarf from K2 in a 41 day orbit (2016) Astron. J, 153, p. 15 | ||
| 504 | |a Osborn, H., K2-110 b: A massive mini-Neptune exoplanet (2017) Astron. Astrophys, 604, p. A19 | ||
| 504 | |a Hatzes, A.P., The mass of CoRoT-7b (2011) Astrophys. J, 743, p. 75 | ||
| 504 | |a Haywood, R., Planets and stellar activity: Hide and seek in the CoRoT-7 system (2014) Mon. Not. R. Astron. Soc, 443, pp. 2517-2531 | ||
| 504 | |a Anglada-Escude, G., Tuomi, M., Comment on 'stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581 (2015) Science, 347, p. 1080 | ||
| 504 | |a Lissauer, J.J., Validation of Kepler's multiple planet candidates II Refined statistical framework and descriptions of systems of special interest (2014) Astrophys. J, 784, p. 44 | ||
| 504 | |a Sotin, C., Grasset, O., Mocquet, A., Mass-radius curve for extrasolar Earth-like planets and ocean planets (2007) Icarus, 191, pp. 337-351 | ||
| 504 | |a Badro, J., Cote, A.S., Brodholt, J.P., A seismologically consistent compositional model of Earth's core (2014) Proc. Natl Acad. Sci. USA, 111, pp. 7542-7545 | ||
| 504 | |a Lebrun, T., Thermal evolution of an early magma ocean in interaction with the atmosphere (2013) J. Geophys. Res.: Planets, 118, pp. 1155-1176 | ||
| 504 | |a Lodders, K., (2010) Principles and Perspectives in Cosmochemistry, pp. 379-417. , (eds Goswami, A. &Reddy, B) (Astrophysics and Space Science Proc., Springer, Berlin, Germany, ) | ||
| 504 | |a Allegre, C.J., Poirier, J.-P., Humler, E., Hofmann, A.W., The chemical composition of the Earth (1995) Earth. Planet. Sci. Lett, 134, pp. 515-526 | ||
| 504 | |a Grevesse, N., Asplund, M., Sauval, A., The solar chemical composition (2007) Space. Sci. Rev, 130, pp. 105-114 | ||
| 504 | |a Asplund, M., Grevesse, N., Sauval, A.J., Scott, P., The chemical composition of the Sun (2009) Annu. Rev. Astron. Astrophys, 47, pp. 481-522 | ||
| 504 | |a Owen, J.E., Jackson, A.P., Planetary evaporation by UV and X-ray radiation: Basic hydrodynamics (2012) Mon. Not. R. Astron. Soc, 425, pp. 2931-2947 | ||
| 504 | |a Pallavicini, R., Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity (1981) Astrophys. J, 248, pp. 279-290 | ||
| 504 | |a Ochsenbein, F., Bauer, P., Marcout, J., The VizieR database of astronomical catalogues (2000) Astron. Astrophys. Suppl. Ser, 143, pp. 23-32 | ||
| 520 | 3 | |a Earth, Venus, Mars and some extrasolar terrestrial planets 1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle 2 . At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle 3 . Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact 4 , mantle evaporation 5 or the depletion of silicate at the inner edge of the protoplanetary disk 6 . These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry 7 . This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo 8 ) into the global context of the formation and evolution of solar and extrasolar terrestrial planets. © 2018 The Author(s). |l eng | |
| 536 | |a Detalles de la financiación: National Aeronautics and Space Administration | ||
| 536 | |a Detalles de la financiación: FP7-COFUND | ||
| 536 | |a Detalles de la financiación: Fuel Cell Technologies Program, FCT, PTDC/FIS-AST/7073/2014, POCI–01–0145-FEDER–016886, POCI-01-0145-FEDER-016880, IF/00650/2015/CP1273/CT0001, UID/FIS/04434/2013 & POCI–01–0145-FEDER–007672, IF/01312/2014/CP1215/CT0004, IF/00849/2015/ CP1273/CT0003, PTDC/FIS-AST/1526/2014 | ||
| 536 | |a Detalles de la financiación: European Commission | ||
| 536 | |a Detalles de la financiación: Fundação para a Ciência e a Tecnologia | ||
| 536 | |a Detalles de la financiación: ESP2015-65712-C5-1-R | ||
| 536 | |a Detalles de la financiación: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung | ||
| 536 | |a Detalles de la financiación: IF/00028/2014/ CP1215/CT0002, PD/ BD/128119/2016, PD/BD/52700/2014, SFRH/BD/93848/2013 | ||
| 536 | |a Detalles de la financiación: Qatar National Research Fund, QNRF-NPRP-X-019-1 | ||
| 536 | |a Detalles de la financiación: California Institute of Technology, Caltech | ||
| 536 | |a Detalles de la financiación: University of Massachusetts, UMASS | ||
| 536 | |a Detalles de la financiación: ST/P000495/1 | ||
| 536 | |a Detalles de la financiación: National Science Foundation | ||
| 536 | |a Detalles de la financiación: IF/00169/2012/CP0150/CT0002 | ||
| 536 | |a Detalles de la financiación: Centre National d’Etudes Spatiales, CNES | ||
| 536 | |a Detalles de la financiación: University of Warwick | ||
| 536 | |a Detalles de la financiación: IF/01037/2013/ CP1191/CT0001 | ||
| 536 | |a Detalles de la financiación: University of California, Los Angeles | ||
| 536 | |a Detalles de la financiación: We are grateful to the HARPS observers who conducted part of the visitor-mode observations at La Silla Observatory: R. I. Bustos, N. Astudillo, A. Wyttenbach, E. Linder, X. Bonfils, E. Hébrard and A. Suarez. A.S. thanks E. Hugot for comments on the manuscript. This publication is based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 198.C-0168. This publication makes use of The Data & Analysis Center for Exoplanets (DACE), which is a facility based at the University of Geneva (CH) dedicated to extrasolar planet data visualization, exchange and analysis. DACE is a platform of the Swiss National Centre of Competence in Research (NCCR) PlanetS, federating the Swiss expertise in exoplanet research. The DACE platform is available at https://dace. unige.ch. This research has made use of the NASA (National Aeronautics and Space Administration) Exoplanet Archive, which is operated by the California Institute of Technology, under contract with NASA under the Exoplanet Exploration Program. This research has made use of the VizieR catalogue access tool, CDS (http://vizier.u-strasbg.fr/ vizier/surveys.htx). The original description of the VizieR service was published in ref. 76. This publication makes use of data products from the Two-Micron All-Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the National Science Foundation. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by NASA. The Porto group acknowledges support from Fundação para a Ciência e a Tecnologia (FCT) through national funds and from FEDER through COMPETE2020 by the grants UID/FIS/04434/2013 & POCI–01–0145-FEDER–007672, PTDC/FIS-AST/1526/2014 & POCI–01–0145-FEDER–016886 and PTDC/FIS-AST/7073/2014 & POCI-01-0145-FEDER-016880. FCT is further acknowledged through the Investigador FCT contracts IF/01312/2014/CP1215/CT0004 (S.C.C.B.), IF/00849/2015/ CP1273/CT0003 (E.D.M.), IF/00650/2015/CP1273/CT0001 (V.A.), IF/01037/2013/ CP1191/CT0001 (P.F.), IF/00169/2012/CP0150/CT0002 (N.C.S.) and IF/00028/2014/ CP1215/CT0002 (S.G.S.) and for the fellowships SFRH/BD/93848/2013 (J.P.F.), PD/ BD/128119/2016 (S.H.) and PD/BD/52700/2014 (J.J.N.), which are funded by FCT (Portugal) and POPH/FSE (EC). J.L.-B. acknowledges support from the Marie Curie Actions of the European Commission (FP7-COFUND). D.Bar. has been supported by the Spanish grant ESP2015-65712-C5-1-R. D.J.A. is funded under STFC consolidated grant reference ST/P000495/1. D.J.A.B. acknowledges support from the University of Warwick and the UKSA. E.F. is funded by the Qatar National Research Foundation (programme QNRF-NPRP-X-019-1). X.D. is grateful to the Society in Science–The Branco Weiss Fellowship for its financial support. R.L. thanks CNES for financial support through its postdoctoral programme. The project leading to this publication has received funding from Excellence Initiative of Aix-Marseille University–A*MIDEX, a French Investissements d’Avenir programme. The French group acknowledges financial support from the French Programme National de Planétologie (PNP, INSU). This work has been carried out in the frame of the NCCR PlanetS supported by the Swiss National Science Foundation (SNSF). | ||
| 593 | |a Aix Marseille Univ., CNRS, LAM, Laboratoire d'Astrophysique de Marseille, Marseille, France | ||
| 593 | |a Department of Physics, University of Warwick, Coventry, United Kingdom | ||
| 593 | |a Instituto de Astrofísica e Ciências Do Espaço, Universidade Do Porto, CAUP, Porto, Portugal | ||
| 593 | |a European Southern Observatory (ESO), Santiago, Chile | ||
| 593 | |a Université de Toulouse, UPS-OMP, IRAP, Toulouse, France | ||
| 593 | |a Paris-Saclay Université, ENS Cachan, Cachan, France | ||
| 593 | |a Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland | ||
| 593 | |a Depto. de Astrofísica, Centro de Astrobiología (CSIC-INTA), Madrid, Spain | ||
| 593 | |a INAF - Osservatorio Astrofisico di Torino, Pino Torinese, Italy | ||
| 593 | |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina | ||
| 593 | |a CONICET - Universidad de Buenos Aires, Instituto de Astronomía y Física Del Espacio (IAFE), Buenos Aires, Argentina | ||
| 593 | |a INAF - Osservatorio Atrofisico di Catania, Catania, Italy | ||
| 593 | |a Departamento de Física e Astronomia, Faculdade de Ciencias, Universidade Do Porto, Porto, Portugal | ||
| 593 | |a Institut d'Astrophysique de Paris, UMR7095 CNRS, Universite Pierre and Marie Curie, Paris, France | ||
| 593 | |a Aix Marseille Univ., CNRS, OHP, Observatoire de Haute Provence, Saint Michel l'Observatoire, France | ||
| 700 | 1 | |a Brugger, B. | |
| 700 | 1 | |a Armstrong, D.J. | |
| 700 | 1 | |a Adibekyan, V. | |
| 700 | 1 | |a Lillo-Box, J. | |
| 700 | 1 | |a Gosselin, H. | |
| 700 | 1 | |a Aguichine, A. | |
| 700 | 1 | |a Almenara, J.-M. | |
| 700 | 1 | |a Barrado, D. | |
| 700 | 1 | |a Barros, S.C.C. | |
| 700 | 1 | |a Bayliss, D. | |
| 700 | 1 | |a Boisse, I. | |
| 700 | 1 | |a Bonomo, A.S. | |
| 700 | 1 | |a Bouchy, F. | |
| 700 | 1 | |a Brown, D.J.A. | |
| 700 | 1 | |a Deleuil, M. | |
| 700 | 1 | |a Delgado Mena, E. | |
| 700 | 1 | |a Demangeon, O. | |
| 700 | 1 | |a Díaz, R.F. | |
| 700 | 1 | |a Doyle, A. | |
| 700 | 1 | |a Dumusque, X. | |
| 700 | 1 | |a Faedi, F. | |
| 700 | 1 | |a Faria, J.P. | |
| 700 | 1 | |a Figueira, P. | |
| 700 | 1 | |a Foxell, E. | |
| 700 | 1 | |a Giles, H. | |
| 700 | 1 | |a Hébrard, G. | |
| 700 | 1 | |a Hojjatpanah, S. | |
| 700 | 1 | |a Hobson, M. | |
| 700 | 1 | |a Jackman, J. | |
| 700 | 1 | |a King, G. | |
| 700 | 1 | |a Kirk, J. | |
| 700 | 1 | |a Lam, K.W.F. | |
| 700 | 1 | |a Ligi, R. | |
| 700 | 1 | |a Lovis, C. | |
| 700 | 1 | |a Louden, T. | |
| 700 | 1 | |a McCormac, J. | |
| 700 | 1 | |a Mousis, O. | |
| 700 | 1 | |a Neal, J.J. | |
| 700 | 1 | |a Osborn, H.P. | |
| 700 | 1 | |a Pepe, F. | |
| 700 | 1 | |a Pollacco, D. | |
| 700 | 1 | |a Santos, N.C. | |
| 700 | 1 | |a Sousa, S.G. | |
| 700 | 1 | |a Udry, S. | |
| 700 | 1 | |a Vigan, A. | |
| 773 | 0 | |d Nature Publishing Group, 2018 |g v. 2 |h pp. 393-400 |k n. 5 |p Nat. Astron. |x 23973366 |t Nature Astronomy | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046361600&doi=10.1038%2fs41550-018-0420-5&partnerID=40&md5=1b2b56ae1e9c6120bb2cd0869b68c172 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1038/s41550-018-0420-5 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_23973366_v2_n5_p393_Santerne |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_23973366_v2_n5_p393_Santerne |y Registro en la Biblioteca Digital |
| 961 | |a paper_23973366_v2_n5_p393_Santerne |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 77933 | ||