When SUMO met splicing

Spliceosomal proteins have been revealed as SUMO conjugation targets. Moreover, we have reported that many of these are in a SUMO-conjugated form when bound to a pre-mRNA substrate during a splicing reaction. We demonstrated that SUMOylation of Prp3 (PRPF3), a component of the U4/U6 di-snRNP, is req...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pozzi, B.
Otros Autores: Mammi, P., Bragado, L., Giono, L.E, Srebrow, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Taylor and Francis Inc. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 18107caa a22016577a 4500
001 PAPER-16946
003 AR-BaUEN
005 20230518204801.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85046655410 
024 7 |2 cas  |a SUMO 1 protein, 182213-10-1; Nuclear Proteins; PRPF3 protein, human; Ribonucleoprotein, U4-U6 Small Nuclear; RNA Splicing Factors; SUMO-1 Protein 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Pozzi, B. 
245 1 5 |a When SUMO met splicing 
260 |b Taylor and Francis Inc.  |c 2018 
270 1 0 |m Srebrow, A.; Ciudad Universitaria, Pabellón IFIBYNE, Buenos Aires (C1428EHA)Argentina; email: asrebrow@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Will, C.L., Lührmann, R., Spliceosome structure and function (2011) Cold Spring Harb Perspect Biol, 3, pp. 1-2 
504 |a Matera, A.G., Wang, Z., A day in the life of the spliceosome (2014) Nat Rev Mol Cell Biol, 15, pp. 108-121 
504 |a Chen, W., Moore, M.J., The spliceosome: Disorder and dynamics defined (2014) Curr Opin Struct Biol, 24, pp. 141-149 
504 |a Papasaikas, P., Valcárcel, J., The Spliceosome: The Ultimate RNA Chaperone and Sculptor (2016) Trends Biochem Sci, 41, pp. 33-45 
504 |a Taliaferro, J.M., Lambert, N.J., Sudmant, P.H., RNA Sequence Context Effects Measured In Vitro Predict In Vivo Protein Binding and Regulation (2016) Mol Cell, 64, pp. 294-306. , et al 
504 |a Busch, A., Hertel, K.J., Evolution of SR protein and hnRNP splicing regulatory factors (2012) Wiley Interdiscip Rev RNA, 3 (1), pp. 1-12 
504 |a Long, J.C., Caceres, J.F., The SR protein family of splicing factors : master regulators of gene expression (2009) Biochem J, 417 (1), pp. 15-27 
504 |a Twyffels, L., Gueydan, C., Kruys, V., Shuttling SR proteins: More than splicing factors (2011) FEBS J, 278, pp. 3246-3255 
504 |a Geuens, T., Bouhy, D., Timmerman, V., The hnRNP family : insights into their role in health and disease (2016) Hum Genet, 135, pp. 851-867 
504 |a Dvinge, H., Kim, E., Abdel-wahab, O., RNA splicing factors as oncoproteins and tumour suppressors (2016) Nat Rev Can, 16, pp. 413-430. , et al 
504 |a Li, X., Manley, J.L., Inactivation of the SR Protein Splicing Factor ASF / SF2 Results in Genomic Instability (2005) Cell, 122, pp. 365-378 
504 |a Lin, S., Coutinho-mansfield, G., Wang, D., The splicing factor SC35 has an active role in transcriptional elongation (2008) Nat Str & Mol Biol, 15, pp. 819-826. , et al 
504 |a Wu, H., Sun, S., Tu, K., Article A Splicing-Independent Function of SF2 / ASF in MicroRNA Processing (2010) Mol Cell, 38, pp. 67-77. , et al 
504 |a Huang, Y., Gattoni, R., Stévenin, J., SR splicing factors as Adapter Proteins for TAP-Dependent mRNA Export (2003) Mol Cell, 11, pp. 837-843. , et al 
504 |a Zhang, Z., Krainer, A.R., Involvement of SR Proteins in mRNA Surveillance (2004) Mol Cell, 16, pp. 597-607 
504 |a Michlewski, G., Sanford, J.R., Cáceres, J.F., The Splicing Factor SF2/ASF Regulates Translation Initiation by Enhancing Phosphorylation of 4E-BP1 (2008) Mol Cell, 30, pp. 179-189 
504 |a Pelisch, F., Gerez, J., Druker, J., The serine/arginine-rich protein SF2/ASF regulates protein sumoylation (2010) Proc Natl Acad Sci U S A, 107, pp. 16119-16124. , et al 
504 |a Zhong, X., Wang, P., Han, J., SR Proteins in Vertical Integration of Gene Expression from Transcription to RNA Processing to Translation (2009) Mol Cell, 35, pp. 1-10. , et al 
504 |a Shin, C., Kleiman, F.E., Manley, J.L., Multiple Properties of the Splicing Repressor SRp38 Distinguish It from Typical SR Proteins (2005) Mol Cell Biol, 25, pp. 8334-8343 
504 |a Denegri, M., Chiodi, I., Corioni, M., Stress-induced nuclear bodies are sites of accumulation of pre-mRNA processing factors (2001) Mol Biol Cell, 12, pp. 3502-3514. , et al 
504 |a Bedard, K.M., Daijogo, S., Semler, B.L., A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation (2007) EMBO J, 26, pp. 459-467 
504 |a Swanson, C.M., Sherer, N.M., Malim, M.H., SRp40 and SRp55 Promote the Translation of Unspliced Human Immunodeficiency Virus Type 1 RNA (2010) J Virol, 84, pp. 6748-6759 
504 |a Auyeung, V.C., Ulitsky, I., McGeary, S.E., Beyond secondary structure: Primary-sequence determinants license Pri-miRNA hairpins for processing (2013) Cell, 152, pp. 844-858. , et al 
504 |a Sanford, J.R., Ellis, J.D., Cazalla, D., Reversible phosphorylation differentially affects nuclear and cytoplasmic functions of splicing factor 2/alternative splicing factor (2005) Proc Natl Acad Sci U S A, 102, pp. 15042-15047. , et al 
504 |a Botti, V., McNicoll, F., Steiner, M.C., Cellular differentiation state modulates the mRNA export activity of SR proteins (2017) J Cell Biol, 216, pp. 1993-2009. , et al 
504 |a Hochstrasser, M., Origin and function of ubiquitin-like proteins (2009) Nature, 458, pp. 422-429 
504 |a Jentsch, S., Psakhye, I., Control of nuclear activities by substrate-selective and protein-group SUMOylation (2013) Annu Rev Genet, 47, pp. 167-186 
504 |a Liang, Y., Lee, C., Yao, Y., SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies (2016) Sci Rep, 6, pp. 1-15. , et al 
504 |a Guo, D., Li, M., Zhang, Y., A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes (2004) Nat Genet, 36, pp. 837-841. , et al 
504 |a Vassileva, M.T., Matunis, M.J., SUMO modification of heterogeneous nuclear ribonucleoproteins (2004) Mol Cell Biol, 24, pp. 3623-3632 
504 |a Villarroya-Beltri, C., Gutiérrez-Vázquez, C., Sánchez-Cabo, F., Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs (2013) Nat Commun, 4, p. 2980. , et al 
504 |a Misteli, T., Cáceres, J.F., Clement, J.Q., Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo (1998) J Cell Biol, 143, pp. 297-307. , et al 
504 |a Soret, J., Gabut, M., Dupon, C., Altered Serine/Arginine-Rich Protein Phosphorylation and Exonic Enhancer-Dependent Splicing in Mammalian Cells Lacking Topoisomerase I (2003) Cancer Res, 63, pp. 8203-8211. , et al 
504 |a Ngo, J.C.K., Chakrabarti, S., Ding, J.H., Interplay between SRPK and Clk/Sty kinases in phosphorylation of the splicing factor ASF/SF2 is regulated by a docking motif in ASF/SF2 (2005) Mol Cell, 20, pp. 77-89. , et al 
504 |a Wang, H.Y., Lin, W., Dyck, J.A., SRPK2: A differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells (1998) J Cell Biol, 140, pp. 737-750. , et al 
504 |a Xiao, S.H., Manley, J.L., Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing (1997) Genes Dev, 11, pp. 334-344 
504 |a Shin, C., Feng, Y., Manley, J.L., Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock (2004) Nature, 427, pp. 553-558 
504 |a Shi, Y., Reddy, B., Manley, J.L., PP1/PP2A Phosphatases Are Required for the Second Step of Pre-mRNA Splicing and Target Specific snRNP Proteins (2006) Mol Cell, 23, pp. 819-829 
504 |a Mathew, R., Hartmuth, K., Möhlmann, S., Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6-U5 tri-snRNP into the spliceosome (2008) Nat Struct Mol Biol, 15, pp. 435-443. , et al 
504 |a Choudhary, C., Kumar, C., Gnad, F., Lysine acetylation targets protein complexes and co-regulates major cellular functions (2009) Science, 325, pp. 834-840. , et al 
504 |a Kuhn, A.N., van Santen, M.A., Schwienhorst, A., Stalling of spliceosome assembly at distinct stages by small-molecule inhibitors of protein acetylation and deacetylation (2009) RNA, 15, pp. 153-175. , et al 
504 |a Gunderson, F.Q., Merkhofer, E.C., Johnson, T.L., Dynamic histone acetylation is critical for cotranscriptional spliceosome assembly and spliceosomal rearrangements (2011) Proc Natl Acad Sci U S A, 108, pp. 2004-2009 
504 |a Meister, G., Eggert, C., Bühler, D., Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln (2001) Curr Biol, 11, pp. 1990-1994. , et al 
504 |a Boisvert, F.M., Côté, J., Boulanger, M.C., Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing (2002) J Cell Biol, 159, pp. 957-969. , et al 
504 |a Boisvert, F.-M., Côté, J., Boulanger, M.-C., A Proteomic Analysis of Arginine-methylated Protein Complexes (2003) Mol Cell Proteomics, 2, pp. 1319-1330. , et al 
504 |a Sinha, R., Allemand, E., Zhang, Z., Arginine Methylation Controls the Subcellular Localization and Functions of the Oncoprotein Splicing Factor SF2/ASF (2010) Mol Cell Biol, 30, pp. 2762-2774. , et al 
504 |a Nichols, R.C., Wang, X.W., Tang, J., The RGG domain in hnRNP A2 affects subcellular localization (2000) Exp Cell Res, 256, pp. 522-532. , et al 
504 |a Passos, D.O., Quaresma, A.J.C., Kobarg, J., The methylation of the C-terminal region of hnRNPQ (NSAP1) is important for its nuclear localization (2006) Biochem Biophys Res Commun, 346, pp. 517-525 
504 |a Yu, M.C., The Role of Protein Arginine Methylation in mRNP Dynamics (2011) Mol Biol Int, 2011, p. 163827 
504 |a Milligan, L., Sayou, C., Tuck, A., RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit (2017) Elife, 6, pp. 1-27. , et al 
504 |a Bellare, P., Small, E.C., Huang, X., A role for ubiquitin in the spliceosome assembly pathway (2008) Nat Struct Mol Biol, 15, pp. 444-451. , et al 
504 |a Bellare, P., Kutach, A.K., Rines, A.K., Ubiquitin binding by a variant Jab1/MPN domain in the essential pre-mRNA splicing factor Prp8p (2006) RNA, 12, pp. 292-302. , et al 
504 |a Song, E.J., Werner, S.L., Neubauer, J., The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome (2010) Genes Dev, 24, pp. 1434-1447. , et al 
504 |a Hendriks, I.A., Vertegaal, A.C.O., A comprehensive compilation of SUMO proteomics (2016) Nat Rev Mol Cell Biol, 17, pp. 581-595 
504 |a Richard, P., Vethantham, V., Manley, J.L., Roles of sumoylation in mRNA processing and metabolism (2017) Adv Exp Med Biol, 963, pp. 15-33 
504 |a Vethantham, V., Rao, N., Manley, J.L., Sumoylation modulates the assembly and activity of the pre-mRNA 3’ processing complex (2007) Mol Cell Biol, 27, pp. 8848-8858 
504 |a Desterro, J.M.P., Keegan, L.P., Jaffray, E., SUMO-1 modification alters ADAR1 editing activity (2005) Mol Biol Cell, 16, pp. 5115-5126. , et al 
504 |a Bretes, H., Rouviere, J.O., Leger, T., Sumoylation of the THO complex regulates the biogenesis of a subset of mRNPs (2014) Nucleic Acids Res, 42, pp. 5043-5058. , et al 
504 |a Rappsilber, J., Ryder, U., Lamond, A.I., Large-scale proteomic analysis of the human spliceosome (2003) Genome Res, 13, pp. 1231-1245. , et al 
504 |a Hutten, S., Chachami, G., Winter, U., A role for the Cajal-body-associated SUMO isopeptidase USPL1 in snRNA transcription mediated by RNA polymerase II (2014) J Cell Sci, 127, pp. 1065-1078. , et al 
504 |a Navascues, J., Bengoechea, R., Tapia, O., SUMO-1 transiently localizes to Cajal bodies in mammalian neurons (2008) J Struct Biol, 163, pp. 137-146. , et al 
504 |a Ihara, M., Stein, P., Schultz, R.M., UBE2I (UBC9), a SUMO-conjugating enzyme, localizes to nuclear speckles and stimulates transcription in mouse oocytes (2008) Biol Reprod, 79, pp. 906-913 
504 |a Pozzi, B., Bragado, L., Will, C.L., SUMO conjugation to spliceosomal proteins is required for efficient pre-mRNA splicing (2017) Nucleic Acids Res, 45, pp. 6729-6745. , et al 
504 |a Rouvière, J.O., Geoffroy, M.C., Palancade, B., Multiple crosstalks between mRNA biogenesis and SUMO (2013) Chromosoma, 122, pp. 387-399 
504 |a Li, M., Pokharel, S., Wang, J.T., RECQ5-dependent SUMOylation of DNA topoisomerase I prevents transcription-associated genome instability (2015) Nat Commun, 8 (6), p. 6720. , et al 
504 |a Pawellek, A., Ryder, U., Tammsalu, T., Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP (2017) Elife, 6, pp. 1-36. , et al 
504 |a Wahl, M.C., Will, C.L., Lührmann, R., The Spliceosome: Design Principles of a Dynamic RNP Machine (2009) Cell, 136, pp. 701-718 
504 |a Flotho, A., Melchior, F., Sumoylation: a regulatory protein modification in health and disease (2013) Annu Rev Biochem, 82, pp. 357-385 
504 |a Daguenet, E., Dujardin, G., Valcárcel, J., The pathogenicity of splicing defects: mechanistic insights into pre‐mRNA processing inform novel therapeutic approaches (2015) EMBO Rep, 16, p. 1655 
504 |a Scotti, M.M., Swanson, M.S., RNA mis-splicing in disease (2016) Nat Rev Genet, 17, pp. 19-32 
504 |a Krausová, M., Staněk, D., snRNP proteins in health and disease (2017) Semin Cell Dev Biol 
504 |a Wahl, M.C., Lührmann, R., SnapShot: Spliceosome Dynamics III (2015) Cell, 162, p. 690 
504 |a Cvitkovic, I., Jurica, M.S., Spliceosome database: A tool for tracking components of the spliceosome (2013) Nucleic Acids Res, 41, pp. D132-D141 
520 3 |a Spliceosomal proteins have been revealed as SUMO conjugation targets. Moreover, we have reported that many of these are in a SUMO-conjugated form when bound to a pre-mRNA substrate during a splicing reaction. We demonstrated that SUMOylation of Prp3 (PRPF3), a component of the U4/U6 di-snRNP, is required for U4/U6•U5 tri-snRNP formation and/or recruitment to active spliceosomes. Expanding upon our previous results, we have shown that the splicing factor SRSF1 stimulates SUMO conjugation to several spliceosomal proteins. Given the relevance of the splicing process, as well as the complex and dynamic nature of its governing machinery, the spliceosome, the molecular mechanisms that modulate its function represent an attractive topic of research. We posit that SUMO conjugation could represent a way of modulating spliceosome assembly and thus, splicing efficiency. How cycles of SUMOylation/de-SUMOylation of spliceosomal proteins become integrated throughout the highly choreographed spliceosomal cycle awaits further investigation. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Universidad de Buenos Aires, 20020130100157BA, UBACyT 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, 2014-2888, 2012-0136 
536 |a Detalles de la financiación: BP was a Bunge Born/Max Planck travelling fellowship beneficiary. AS and LEG are career investigators; BP is recipient of a postdoctoral fellowship; PM and LB are recipients of doctoral fellowships, all from the Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET). 
536 |a Detalles de la financiación: Work within the Srebrow Laboratory, related to the topic of this article, was supported by grants from the Agencia Nacional de Investigaciones Cient!ificas y Tecnol!ogicas of Argentina (ANPCyT) [grant numbers 2012-0136, 2014-2888]; the University of Buenos Aires, Argentina (UBACyT) [grant number 20020130100157BA]; and the European Alternative Splicing Network (EURASNET). 
593 |a Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA- CONICET); Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina 
690 1 0 |a POST-TRANSLATIONAL MODIFICATIONS 
690 1 0 |a SPLICEOSOME 
690 1 0 |a SPLICING 
690 1 0 |a SR PROTEINS 
690 1 0 |a SRSF1 
690 1 0 |a SUMO CONJUGATION 
690 1 0 |a SUMO PROTEIN 
690 1 0 |a NUCLEAR PROTEIN 
690 1 0 |a PRPF3 PROTEIN, HUMAN 
690 1 0 |a RNA SPLICING FACTOR 
690 1 0 |a SMALL NUCLEAR RIBONUCLEOPROTEIN 
690 1 0 |a SUMO 1 PROTEIN 
690 1 0 |a ARTICLE 
690 1 0 |a CONJUGATION 
690 1 0 |a HUMAN 
690 1 0 |a PROTEIN PROCESSING 
690 1 0 |a RNA SPLICING 
690 1 0 |a SPLICEOSOME 
690 1 0 |a ANIMAL 
690 1 0 |a GENETICS 
690 1 0 |a METABOLISM 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a RNA SPLICING 
690 1 0 |a SUMOYLATION 
690 1 0 |a ANIMALS 
690 1 0 |a HUMANS 
690 1 0 |a NUCLEAR PROTEINS 
690 1 0 |a RIBONUCLEOPROTEIN, U4-U6 SMALL NUCLEAR 
690 1 0 |a RNA SPLICING 
690 1 0 |a RNA SPLICING FACTORS 
690 1 0 |a SUMO-1 PROTEIN 
690 1 0 |a SUMOYLATION 
700 1 |a Mammi, P. 
700 1 |a Bragado, L. 
700 1 |a Giono, L.E. 
700 1 |a Srebrow, A. 
773 0 |d Taylor and Francis Inc., 2018  |g v. 15  |h pp. 689-695  |k n. 6  |p RNA Biol.  |x 15476286  |t RNA Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046655410&doi=10.1080%2f15476286.2018.1457936&partnerID=40&md5=e7f337e33a4313a2bda55848a00364c2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1080/15476286.2018.1457936  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15476286_v15_n6_p689_Pozzi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15476286_v15_n6_p689_Pozzi  |y Registro en la Biblioteca Digital 
961 |a paper_15476286_v15_n6_p689_Pozzi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77899