A Categorical Equivalence for Stonean Residuated Lattices

We follow the ideas given by Chen and Grätzer to represent Stone algebras and adapt them for the case of Stonean residuated lattices. Given a Stonean residuated lattice, we consider the triple formed by its Boolean skeleton, its algebra of dense elements and a connecting map. We define a category wh...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Busaniche, M.
Otros Autores: Cignoli, R., Marcos, M.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Netherlands 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06394caa a22006737a 4500
001 PAPER-16936
003 AR-BaUEN
005 20230607131907.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85047127792 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Busaniche, M. 
245 1 2 |a A Categorical Equivalence for Stonean Residuated Lattices 
260 |b Springer Netherlands  |c 2019 
270 1 0 |m Busaniche, M.; Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ, Predio Dr. Alberto Cassano del CCT-CONICET-Santa Fe, Colectora de la Ruta Nacional no. 168, Argentina; email: mbusaniche@santafe-conicet.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Aguzzoli, S., Flaminio, T., Ugolini, S., Equivalences between the subcategories of MTL-algebras via Boolean algebras and prelinear semihoops (2017) Journal of Logic and Computation, , https://doi.org/10.1093/logcom/exx014 
504 |a Bredon, G.E., (1997) Sheaf Theory, Second Edition, Graduate Texts in Mathematics 170, , Springer-Verlag, New York - Heidelberg - Berlin 
504 |a Burris, S., Sankappanavar, H.P., (1981) A Course in Universal Algebra Graduate Texts in Mathematics, 78. , Springer-Verlag, New York - Heidelberg - Berlin 
504 |a Chen, C.C., Grätzer, G., Stone Lattices. I: Construction Theorems (1969) Canad. J. Math., 21, pp. 884-994 
504 |a Cignoli, R., Free algebras in varieties of Stonean residuated lattices (2008) Soft Comput., 12, pp. 315-320 
504 |a Cignoli, R., Esteva, F., Commutative integral bounded residuated lattices with an added involution (2009) Ann. Pure Appl. Logic, 161, pp. 150-160 
504 |a Cignoli, R., Torrens, A., An algebraic analysis of product logic (2000) Multiple-Valued Logic, 5, pp. 45-65 
504 |a Cignoli, R., Torrens, A., Free algebras in varieties of BL-algebras with a Boolean retract (2002) Algebra Univers., 48, pp. 55-79 
504 |a Cignoli, R., Torrens, A., Free Algebras in varieties of Glivenko MTL-algebras satisfying the equation 2 (x 2 ) = (2 x) 2 (2006) Studia Logica, 83, pp. 157-181 
504 |a Cignoli, R., Torrens, A., Erratum to: Free Algebras in varieties of Glivenko MTL-algebras satisfying the equation 2 (x 2 ) = (2 x) 2 (2017) Studia Logica, 105, pp. 227-228 
504 |a Cignoli, R., Torrens, A., Varieties of commutative integral bounded residuated lattices admitting a Boolean retraction term (2012) Studia Logica, 100, pp. 1107-1136 
504 |a Davey, B.A., Sheaf spaces and sheaves of universal algebras (1973) Math. Z., 134, pp. 275-290 
504 |a Esteva, F., Godo, L., Monoidal t-norm based logic: towards a logic for left continuous t-norms (2001) Fuzzy Sets and Systems, 124, pp. 271-288 
504 |a Galatos, N.P., Jipsen, T., Kowalskiono, H., (2007) Residuated Lattices: An Algebraic Glimpse at Substructural Logics, , Elsevier, New York 
504 |a Grätzer, G., (1968) Universal Algebra, , Van trand, Princeton 
504 |a Grätzer, G., (1973) General Lattice Theory, , Academic Press, New York San Francisco 
504 |a Jacobson, N., (1989) Basic algebra II, , Second, W. H. Freeman and Company, New York 
504 |a Katriňák, T., A new proof of the construction theorem for Stone algebras (1973) Proceedings of the American Mathematical Society, 40, pp. 75-78 
504 |a Katriňák, T., Mederly, P., Constructions of p-algebras (1983) Algebra Univers., 17, pp. 288-316 
504 |a Knoebel, A., (2012) Sheaves of algebras over Boolean spaces, , Birkhäuser, Basel 
504 |a Kowalskiono, T.H., Residuated Lattices: An Algebraic Glimpse at Logics without Contraction, , Preliminary report 
504 |a Mac Lane, S., (1998) Categories for the Working Mathematician, 5. , 2nd edition, Graduate Texts in Mathematics, Springer, Berlin 
504 |a Maddana Swamy, U., Rama Rao, V.V., Triple and sheaf representations of Stone lattices (1975) Algebra Universalis, 5, pp. 104-113 
504 |a Maeda, F., Maeda, S., (1970) Theory of Symmetric Lattices, , Springer-Verlag, Berlin Heidelberg New York 
504 |a McKenzie, R.G.F., McNultytaylor, W.E., (1987) Algebras, Lattices, Varieties, I. , Wadsworth and Brooks/Cole, Monterey 
504 |a Montagna, F., Ugolini, S., A categorical equivalence for product algebras (2015) Studia Logica, 103, pp. 345-373 
504 |a Schmidt, J., (1975) 
520 3 |a We follow the ideas given by Chen and Grätzer to represent Stone algebras and adapt them for the case of Stonean residuated lattices. Given a Stonean residuated lattice, we consider the triple formed by its Boolean skeleton, its algebra of dense elements and a connecting map. We define a category whose objects are these triples and suitably defined morphisms, and prove that we have a categorical equivalence between this category and that of Stonean residuated lattices. We compare our results with other works and show some applications of the equivalence. © 2018, Springer Science+Business Media B.V., part of Springer Nature.  |l eng 
593 |a Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ, Predio Dr. Alberto Cassano del CCT-CONICET-Santa Fe, Colectora de la Ruta Nacional no. 168, Santa Fe, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a BOOLEAN ALGEBRAS 
690 1 0 |a STONEAN RESIDUATED LATTICES 
690 1 0 |a TRIPLES 
700 1 |a Cignoli, R. 
700 1 |a Marcos, M.A. 
773 0 |d Springer Netherlands, 2019  |g v. 107  |h pp. 399-421  |k n. 2  |p Stud. Logica  |x 00393215  |w (AR-BaUEN)CENRE-365  |t Studia Logica 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047127792&doi=10.1007%2fs11225-018-9800-1&partnerID=40&md5=6e45120c3479142db4fef8dc7b0d59a4  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11225-018-9800-1  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00393215_v107_n2_p399_Busaniche  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00393215_v107_n2_p399_Busaniche  |y Registro en la Biblioteca Digital 
961 |a paper_00393215_v107_n2_p399_Busaniche  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77889