A Categorical Equivalence for Stonean Residuated Lattices
We follow the ideas given by Chen and Grätzer to represent Stone algebras and adapt them for the case of Stonean residuated lattices. Given a Stonean residuated lattice, we consider the triple formed by its Boolean skeleton, its algebra of dense elements and a connecting map. We define a category wh...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Springer Netherlands
2019
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 06394caa a22006737a 4500 | ||
|---|---|---|---|
| 001 | PAPER-16936 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230607131907.0 | ||
| 008 | 190410s2019 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-85047127792 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Busaniche, M. | |
| 245 | 1 | 2 | |a A Categorical Equivalence for Stonean Residuated Lattices |
| 260 | |b Springer Netherlands |c 2019 | ||
| 270 | 1 | 0 | |m Busaniche, M.; Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ, Predio Dr. Alberto Cassano del CCT-CONICET-Santa Fe, Colectora de la Ruta Nacional no. 168, Argentina; email: mbusaniche@santafe-conicet.gov.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Aguzzoli, S., Flaminio, T., Ugolini, S., Equivalences between the subcategories of MTL-algebras via Boolean algebras and prelinear semihoops (2017) Journal of Logic and Computation, , https://doi.org/10.1093/logcom/exx014 | ||
| 504 | |a Bredon, G.E., (1997) Sheaf Theory, Second Edition, Graduate Texts in Mathematics 170, , Springer-Verlag, New York - Heidelberg - Berlin | ||
| 504 | |a Burris, S., Sankappanavar, H.P., (1981) A Course in Universal Algebra Graduate Texts in Mathematics, 78. , Springer-Verlag, New York - Heidelberg - Berlin | ||
| 504 | |a Chen, C.C., Grätzer, G., Stone Lattices. I: Construction Theorems (1969) Canad. J. Math., 21, pp. 884-994 | ||
| 504 | |a Cignoli, R., Free algebras in varieties of Stonean residuated lattices (2008) Soft Comput., 12, pp. 315-320 | ||
| 504 | |a Cignoli, R., Esteva, F., Commutative integral bounded residuated lattices with an added involution (2009) Ann. Pure Appl. Logic, 161, pp. 150-160 | ||
| 504 | |a Cignoli, R., Torrens, A., An algebraic analysis of product logic (2000) Multiple-Valued Logic, 5, pp. 45-65 | ||
| 504 | |a Cignoli, R., Torrens, A., Free algebras in varieties of BL-algebras with a Boolean retract (2002) Algebra Univers., 48, pp. 55-79 | ||
| 504 | |a Cignoli, R., Torrens, A., Free Algebras in varieties of Glivenko MTL-algebras satisfying the equation 2 (x 2 ) = (2 x) 2 (2006) Studia Logica, 83, pp. 157-181 | ||
| 504 | |a Cignoli, R., Torrens, A., Erratum to: Free Algebras in varieties of Glivenko MTL-algebras satisfying the equation 2 (x 2 ) = (2 x) 2 (2017) Studia Logica, 105, pp. 227-228 | ||
| 504 | |a Cignoli, R., Torrens, A., Varieties of commutative integral bounded residuated lattices admitting a Boolean retraction term (2012) Studia Logica, 100, pp. 1107-1136 | ||
| 504 | |a Davey, B.A., Sheaf spaces and sheaves of universal algebras (1973) Math. Z., 134, pp. 275-290 | ||
| 504 | |a Esteva, F., Godo, L., Monoidal t-norm based logic: towards a logic for left continuous t-norms (2001) Fuzzy Sets and Systems, 124, pp. 271-288 | ||
| 504 | |a Galatos, N.P., Jipsen, T., Kowalskiono, H., (2007) Residuated Lattices: An Algebraic Glimpse at Substructural Logics, , Elsevier, New York | ||
| 504 | |a Grätzer, G., (1968) Universal Algebra, , Van trand, Princeton | ||
| 504 | |a Grätzer, G., (1973) General Lattice Theory, , Academic Press, New York San Francisco | ||
| 504 | |a Jacobson, N., (1989) Basic algebra II, , Second, W. H. Freeman and Company, New York | ||
| 504 | |a Katriňák, T., A new proof of the construction theorem for Stone algebras (1973) Proceedings of the American Mathematical Society, 40, pp. 75-78 | ||
| 504 | |a Katriňák, T., Mederly, P., Constructions of p-algebras (1983) Algebra Univers., 17, pp. 288-316 | ||
| 504 | |a Knoebel, A., (2012) Sheaves of algebras over Boolean spaces, , Birkhäuser, Basel | ||
| 504 | |a Kowalskiono, T.H., Residuated Lattices: An Algebraic Glimpse at Logics without Contraction, , Preliminary report | ||
| 504 | |a Mac Lane, S., (1998) Categories for the Working Mathematician, 5. , 2nd edition, Graduate Texts in Mathematics, Springer, Berlin | ||
| 504 | |a Maddana Swamy, U., Rama Rao, V.V., Triple and sheaf representations of Stone lattices (1975) Algebra Universalis, 5, pp. 104-113 | ||
| 504 | |a Maeda, F., Maeda, S., (1970) Theory of Symmetric Lattices, , Springer-Verlag, Berlin Heidelberg New York | ||
| 504 | |a McKenzie, R.G.F., McNultytaylor, W.E., (1987) Algebras, Lattices, Varieties, I. , Wadsworth and Brooks/Cole, Monterey | ||
| 504 | |a Montagna, F., Ugolini, S., A categorical equivalence for product algebras (2015) Studia Logica, 103, pp. 345-373 | ||
| 504 | |a Schmidt, J., (1975) | ||
| 520 | 3 | |a We follow the ideas given by Chen and Grätzer to represent Stone algebras and adapt them for the case of Stonean residuated lattices. Given a Stonean residuated lattice, we consider the triple formed by its Boolean skeleton, its algebra of dense elements and a connecting map. We define a category whose objects are these triples and suitably defined morphisms, and prove that we have a categorical equivalence between this category and that of Stonean residuated lattices. We compare our results with other works and show some applications of the equivalence. © 2018, Springer Science+Business Media B.V., part of Springer Nature. |l eng | |
| 593 | |a Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ, Predio Dr. Alberto Cassano del CCT-CONICET-Santa Fe, Colectora de la Ruta Nacional no. 168, Santa Fe, Argentina | ||
| 593 | |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina | ||
| 690 | 1 | 0 | |a BOOLEAN ALGEBRAS |
| 690 | 1 | 0 | |a STONEAN RESIDUATED LATTICES |
| 690 | 1 | 0 | |a TRIPLES |
| 700 | 1 | |a Cignoli, R. | |
| 700 | 1 | |a Marcos, M.A. | |
| 773 | 0 | |d Springer Netherlands, 2019 |g v. 107 |h pp. 399-421 |k n. 2 |p Stud. Logica |x 00393215 |w (AR-BaUEN)CENRE-365 |t Studia Logica | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047127792&doi=10.1007%2fs11225-018-9800-1&partnerID=40&md5=6e45120c3479142db4fef8dc7b0d59a4 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s11225-018-9800-1 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00393215_v107_n2_p399_Busaniche |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00393215_v107_n2_p399_Busaniche |y Registro en la Biblioteca Digital |
| 961 | |a paper_00393215_v107_n2_p399_Busaniche |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 77889 | ||