Electronic Structure of a Self-Assembled Monolayer with Two Surface Anchors: 6-Mercaptopurine on Au(111)

The electronic structure of aromatic and aliphatic thiols on Au(111) has been extensively studied in relation to possible applications in molecular electronics. In this work, the effect on the electronic structure of an additional anchor to the S-Au bond using 6-mercaptopurine as a model system has...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fernández, C.C
Otros Autores: Pensa, E., Carro, P., Salvarezza, R., Williams, F.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14759caa a22011297a 4500
001 PAPER-16926
003 AR-BaUEN
005 20230518204800.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85046648833 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a LANGD 
100 1 |a Fernández, C.C. 
245 1 0 |a Electronic Structure of a Self-Assembled Monolayer with Two Surface Anchors: 6-Mercaptopurine on Au(111) 
260 |b American Chemical Society  |c 2018 
270 1 0 |m Williams, F.J.; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Argentina; email: fwilliams@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Elion, G., The Purine Path to Chemotherapy (1989) Science, 244, pp. 41-47 
504 |a Karran, P., Attard, N., Thiopurines in Current Medical Practice: Molecular Mechanisms and Contributions to Therapy-Related Cancer (2008) Nat. Rev. Cancer, 8, pp. 24-36 
504 |a Podsiadlo, P., Sinani, V.A., Bahng, J.H., Kam, N.W.S., Lee, J., Kotov, N.A., Gold Nanoparticles Enhance the Anti-Leukemia Action of a 6-Mercaptopurine Chemotherapeutic Agent (2008) Langmuir, 24, pp. 568-574 
504 |a Ghorbani, M., Hamishehkar, H., Hajipour, H., Arsalani, N., Entezami, A.A., Ternary-Responsive Magnetic Nanocarriers for Targeted Delivery of Thiol-Containing Anticancer Drugs (2016) New J. Chem., 40, pp. 3561-3570 
504 |a Wu, X., Zhou, L., Su, Y., Dong, C.-M., Plasmonic, Targeted, and Dual Drugs-Loaded Polypeptide Composite Nanoparticles for Synergistic Cocktail Chemotherapy with Photothermal Therapy (2016) Biomacromolecules, 17, pp. 2489-2501 
504 |a Pensa, E., Carro, P., Rubert, A.A., Benítez, G., Vericat, C., Salvarezza, R.C., Thiol with an Unusual Adsorption-Desorption Behavior: 6-Mercaptopurine on Au(111) (2010) Langmuir, 26, pp. 17068-17074 
504 |a Boland, T., Ratner, B.D., Two-Dimensional Assembly of Purines and Pyrimidines on Au(111) (1994) Langmuir, 10, pp. 3845-3852 
504 |a Carro, P., Müller, K., Maza, F.L., Vericat, C., Starke, U., Kern, K., Salvarezza, R.C., Grumelli, D., 6-Mercaptopurine Self-Assembled Monolayers on Gold (001)-Hex: Revealing the Fate of Gold Adatoms (2017) J. Phys. Chem. C, 121, pp. 8938-8943 
504 |a Maza, F.L., Grumelli, D., Carro, P., Vericat, C., Kern, K., Salvarezza, R.C., The Role of the Crystalline Face in the Ordering of 6-Mercaptopurine Self-Assembled Monolayers on Gold (2016) Nanoscale, 8, pp. 17231-17240 
504 |a Bu, Y., Huan, S., Liu, X., Shen, G., Yu, R., Multiple-Angle-of-Incidence Polarization Infrared Reflection-Absorption Spectroscopy (MAI-PIRRAS) for Investigation of 6-Mercaptopurine SAMs on Smooth Silver Surface (2009) Vib. Spectrosc., 49, pp. 38-42 
504 |a Chu, H., Yang, H., Huan, S., Shen, G., Yu, R., Orientation of 6-Mercaptopurine SAMs at the Silver Electrode as Studied by Raman Mapping and in Situ SERS (2006) J. Phys. Chem. B, 110, pp. 5490-5497 
504 |a Han, Y., Zhu, J., Baik, J., Shin, H., Lee, H., Kim, B., Purine on Graphene: PES and NEXAFS Study of a Heterocyclic Aromatic Organic Compound (2016) Curr. Appl. Phys., 16, pp. 1120-1123 
504 |a Yang, H., Liu, Y., Liu, Z., Yang, Y., Jiang, J., Zhang, Z., Shen, G., Yu, R., Raman Mapping and in Situ SERS Spectroelectrochemical Studies of 6-Mercaptopurine SAMs on the Gold Electrode (2005) J. Phys. Chem. B, 109, pp. 2739-2744 
504 |a De Leo, L.P.M., De La Llave, E., Scherlis, D., Williams, F.J., Molecular and Electronic Structure of Electroactive Self-Assembled Monolayers (2013) J. Chem. Phys., 138, p. 114707 
504 |a Stöhr, J., Outka, D.A., Determination of Molecular Orientations on Surfaces from the Angular Dependence of near-Edge X-Ray-Absorption Fine-Structure Spectra (1987) Phys. Rev. B: Condens. Matter Mater. Phys., 36, pp. 7891-7905 
504 |a Kresse, G., Furthmüller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set (1996) Comput. Mater. Sci., 6, pp. 15-50 
504 |a Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., Van der Waals Density Functional for General Geometries (2004) Phys. Rev. Lett., 92, p. 246401 
504 |a Klimeš, J., Bowler, D.R., Michaelides, A., Chemical Accuracy for the van der Waals Density Functional (2010) J. Phys.: Condens. Matter, 22, p. 022201 
504 |a Blöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979 
504 |a Monkhorst, H.J., Pack, J.D., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B: Solid State, 13, pp. 5188-5192 
504 |a Bolognesi, P., O'Keeffe, P., Feyer, V., Plekan, O., Prince, K., Coreno, M., Mattioli, G., Avaldi, L., Inner Shell Excitation, Ionization and Fragmentation of Pyrimidine (2010) J. Phys.: Conf. Ser., 212, p. 012002 
504 |a Zharnikov, M., High-Resolution X-Ray Photoelectron Spectroscopy in Studies of Self-Assembled Organic Monolayers (2010) J. Electron Spectrosc. Relat. Phenom., 178-179, pp. 380-393 
504 |a Willey, T.M., Vance, A.L., Van Buuren, T., Bostedt, C., Terminello, L.J., Fadley, C.S., Rapid Degradation of Alkanethiol-Based Self-Assembled Monolayers on Gold in Ambient Laboratory Conditions (2005) Surf. Sci., 576, pp. 188-196 
504 |a Viudez, A.J., Madueño, R., Pineda, T., Blázquez, M., Stabilization of Gold Nanoparticles by 6-Mercaptopurine Monolayers. Effects of the Solvent Properties (2006) J. Phys. Chem. B, 110, pp. 17840-17847 
504 |a Pazderski, L., Łakomska, I., Wojtczak, A., Szłyk, E., Sitkowski, J., Kozerski, L., Kamieński, B., Marek, R., The Studies of Tautomerism in 6-Mercaptopurine Derivatives by 1H-13C, 1H-15N NMR and 13C, 15N CPMAS-Experimental and Quantum Chemical Approach (2006) J. Mol. Struct., 785, pp. 205-215 
504 |a Franke, M., Marchini, F., Steinrück, H.-P., Lytken, O., Williams, F.J., Surface Porphyrins Metalate with Zn Ions from Solution (2015) J. Phys. Chem. Lett., 6, pp. 4845-4849 
504 |a Dietrich, P.M., Graf, N., Gross, T., Lippitz, A., Krakert, S., Schüpbach, B., Terfort, A., Unger, W.E.S., Amine Species on Self-Assembled Monolayers of ω-Aminothiolates on Gold as Identified by XPS and NEXAFS Spectroscopy (2010) Surf. Interface Anal., 42, pp. 1184-1187 
504 |a Marmisollé, W.A., Capdevila, D.A., De La Llave, E., Williams, F.J., Murgida, D.H., Self-Assembled Monolayers of NH2-Terminated Thiolates: Order, PKa, and Specific Adsorption (2013) Langmuir, 29, pp. 5351-5359 
504 |a De La Llave, E., Clarenc, R., Schiffrin, D.J., Williams, F.J., Organization of Alkane Amines on a Gold Surface: Structure, Surface Dipole, and Electron Transfer (2014) J. Phys. Chem. C, 118, pp. 468-475 
504 |a Laibinis, P.E., Bain, C.D., Whitesides, G.M., Attenuation of Photoelectrons in Monolayers of N-Alkanethiols Adsorbed on Copper, Silver, and Gold (1991) J. Phys. Chem., 95, pp. 7017-7021 
504 |a Lin, Y.-S., Lin, H.-R., Liu, W.-L., Lee, Y.T., Tseng, C.-M., Ni, C.-K., Liu, C.-L., Hu, W.-P., Measurement and Prediction of the NEXAFS Spectra of Pyrimidine and Purine and the Dissociation Following the Core Excitation (2015) Chem. Phys. Lett., 636, pp. 146-153 
504 |a Zubavichus, Y., Shaporenko, A., Korolkov, V., Grunze, M., Zharnikov, M., X-Ray Absorption Spectroscopy of the Nucleotide Bases at the Carbon, Nitrogen, and Oxygen K-Edges (2008) J. Phys. Chem. B, 112, pp. 13711-13716 
504 |a Abu-Husein, T., Schuster, S., Egger, D.A., Kind, M., Santowski, T., Wiesner, A., Chiechi, R., Zharnikov, M., The Effects of Embedded Dipoles in Aromatic Self-Assembled Monolayers (2015) Adv. Funct. Mater., 25, pp. 3943-3957 
504 |a Rieley, H., Price, N.J., White, R.G., Blyth, R.I.R., Robinson, A.W., A NEXAFS and UPS Study of Thiol Monolayers Self-Assembled on Gold (1995) Surf. Sci., 331-333, pp. 189-195 
504 |a De Renzi, V., Rousseau, R., Marchetto, D., Biagi, R., Scandolo, S., Del Pennino, U., Metal Work-Function Changes Induced by Organic Adsorbates: A Combined Experimental and Theoretical Study (2005) Phys. Rev. Lett., 95, p. 46804 
504 |a Reiss, H., The Fermi Level and the Redox Potential (1985) J. Phys. Chem., 89, pp. 3783-3791 
504 |a Torasso, N., Armaleo, J.M., Tagliazucchi, M., Williams, F.J., Simplified Approach to Work Function Modulation in Polyelectrolyte Multilayers (2017) Langmuir, 33, pp. 2169-2176 
504 |a Cahen, D., Naaman, R., Vager, Z., The Cooperative Molecular Field Effect (2005) Adv. Funct. Mater., 15, pp. 1571-1578 
504 |a Romaner, L., Heimel, G., Ambrosch-Draxl, C., Zojer, E., The Dielectric Constant of Self-Assembled Monolayers (2008) Adv. Funct. Mater., 18, pp. 3999-4006 
504 |a Duwez, A.-S., Pfister-Guillouzo, G., Delhalle, J., Riga, J., Probing Organization and Structural Characteristics of Alkanethiols Adsorbed on Gold and of Model Alkane Compounds through Their Valence Electronic Structure: An Ultraviolet Photoelectron Spectroscopy Study (2000) J. Phys. Chem. B, 104, pp. 9029-9037 
504 |a Duwez, A.-S., Exploiting Electron Spectroscopies to Probe the Structure and Organization of Self-Assembled Monolayers: A Review (2004) J. Electron Spectrosc. Relat. Phenom., 134, pp. 97-138 
504 |a Alloway, D.M., Hofmann, M., Smith, D.L., Gruhn, N.E., Graham, A.L., Colorado, R., Wysocki, V.H., Armstrong, N.R., Interface Dipoles Arising from Self-Assembled Monolayers on Gold: UV-Photoemission Studies of Alkanethiols and Partially Fluorinated Alkanethiols (2003) J. Phys. Chem. B, 107, pp. 11690-11699 
504 |a Whelan, C.M., Barnes, C.J., Walker, C.G.H., Brown, N.M.D., Benzenethiol Adsorption on Au(111) Studied by Synchrotron ARUPS, HREELS and XPS (1999) Surf. Sci., 425, pp. 195-211 
504 |a Koslowski, B., Tschetschetkin, A., Maurer, N., Ziemann, P., 4-Mercaptopyridine on Au(111): A Scanning Tunneling Microscopy and Spectroscopy Study (2011) Phys. Chem. Chem. Phys., 13, p. 4045 
504 |a Wechsler, D., Fernández, C.C., Steinrück, H.-P., Lytken, O., Williams, F.J., Covalent Anchoring and Interfacial Reactions of Adsorbed Porphyrins on Rutile TiO2(110) (2018) J. Phys. Chem. C, 122, pp. 4480-4487 
520 3 |a The electronic structure of aromatic and aliphatic thiols on Au(111) has been extensively studied in relation to possible applications in molecular electronics. In this work, the effect on the electronic structure of an additional anchor to the S-Au bond using 6-mercaptopurine as a model system has been investigated. Results from X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory (DFT) confirm that this molecule adsorbs on Au(111) with S-Au and iminic N-Au bonds. Combined ultraviolet photoelectron spectroscopy and DFT data reveal that formation of the 6MP self-assembled monolayer generates a molecular dipole perpendicular to the surface, with negative charges residing at the metal/monolayer interface and positive charges at the monolayer/vacuum interface, which lowers the substrate work function. Scanning tunneling microscopy shows two surface molecular domains: a well-ordered rectangular lattice where molecules are tilted on average 30° with respect to the substrate and aligned 6MP islands where molecules are standing upright. Finally, we found a new electronic state located at -1.7 eV with respect to the Fermi level that corresponds to a localized π molecular state, while the state corresponding to the N-Au bond is hybridized with Au d electrons and stabilized at much lower energies (-3 eV). Copyright © 2018 American Chemical Society.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2016-0679 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Ministerio de Economía y Competitividad, ENE2016-74889-C4-2-R 
536 |a Detalles de la financiación: P.C. acknowledges MINECO (ENE2016-74889-C4-2-R, AEI-FEDER-UE) and also thankfully acknowledges the computer resources provided by the Computer Support Service for Research (SAII) at the La Laguna University. R.S. thanks ANPCyT for the financial support (PICT 2016-0679). C.C.F. and F.J.W. acknowledge the financial support from CONICET. We acknowledge the financial support from the Brazilian Synchrotron Light Laboratory LNLS to use the PGM beamline. 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina 
593 |a Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de la Plata, CONICET, La Plata, 1900, Argentina 
593 |a Área de Química Física, Departamento de Química, Facultad de Ciencias, Universidad de la Laguna, Instituto de Materiales y Nanotecnología, Avda. Francisco Sánchez, s/n, La Laguna, Tenerife, 38200, Spain 
690 1 0 |a ELECTRONIC STRUCTURE 
690 1 0 |a INTERFACES (MATERIALS) 
690 1 0 |a MOLECULES 
690 1 0 |a SELF ASSEMBLED MONOLAYERS 
690 1 0 |a SELF ASSEMBLY 
690 1 0 |a 6-MERCAPTOPURINE 
690 1 0 |a ALIPHATIC THIOLS 
690 1 0 |a MOLECULAR DIPOLE 
690 1 0 |a MOLECULAR DOMAINS 
690 1 0 |a MOLECULAR STATE 
690 1 0 |a NEGATIVE CHARGE 
690 1 0 |a POSITIVE CHARGES 
690 1 0 |a RECTANGULAR LATTICES 
690 1 0 |a SUBSTRATES 
700 1 |a Pensa, E. 
700 1 |a Carro, P. 
700 1 |a Salvarezza, R. 
700 1 |a Williams, F.J. 
773 0 |d American Chemical Society, 2018  |g v. 34  |h pp. 5696-5702  |k n. 20  |p Langmuir  |x 07437463  |t Langmuir 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046648833&doi=10.1021%2facs.langmuir.8b00807&partnerID=40&md5=aec3afc53b89eddc4f79ad900680e044  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.langmuir.8b00807  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_07437463_v34_n20_p5696_Fernandez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v34_n20_p5696_Fernandez  |y Registro en la Biblioteca Digital 
961 |a paper_07437463_v34_n20_p5696_Fernandez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 77879