Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains

Bacillus sp. B19, Bacillus sp. P12 and B. amyloliquefaciens B14 were isolated from soils of Salta province, and PGPR properties on the common bean (Phaseolus vulgaris L.) cv. Alubia and antagonistic activity against Sclerotinia sclerotiorum were studied. It was determined that B19 and P12 increased...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sabaté, D.C
Otros Autores: Brandan, C.P, Petroselli, G., Erra-Balsells, R., Audisio, M.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier GmbH 2018
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 23928caa a22022337a 4500
001 PAPER-16897
003 AR-BaUEN
005 20230518204758.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85045566589 
024 7 |2 cas  |a Biological Control Agents; fengycin; Fungicides, Industrial; Indoleacetic Acids; Lipopeptides; Peptides, Cyclic; RNA, Ribosomal, 16S; Siderophores 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MCRSE 
100 1 |a Sabaté, D.C. 
245 1 0 |a Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains 
260 |b Elsevier GmbH  |c 2018 
270 1 0 |m Sabaté, D.C.; Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Av. Bolivia 5150, Argentina; email: dcsabate@unsa.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Altamirano, F., Caracterización de bacterias de la raíz de dos variedades de soja cultivadas en regiones geográficas diferentes (2002) Tesis Doctoral, Universidad Nacional de Jujuy, Argentina, pp. 1-88 
504 |a Béchet, M., Caradec, T., Hussein, W., Abderrahmani, A., Chollet, M., Leclère, V., Dubois, T., Jacques, P., Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp (2012) Appl. Microbiol. Biotechnol., 95, pp. 593-600 
504 |a Babalola, O.O., Beneficial bacteria of agricultural importance (2010) Biotechnol. Lett., 32, pp. 1559-1570 
504 |a Balasubramanian, P., Conner, R., McLaren, D., Chatterton, S., Hou, A., Partial resistance to white mould in dry bean (2014) Can. J. Plant Sci., 94, pp. 683-691 
504 |a Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J., Marchant, R., Microbial biosurfactants production, applications and future potential (2010) Appl. Microbiol. Biotechnol., 87, pp. 427-444 
504 |a Bardin, S.D., Huang, H.C., Research on biology and control of Sclerotinia diseases in Canada (2001) Can. J. Plant Pathol., 23, pp. 88-98 
504 |a Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., Ongena, M., Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens (2014) Microb. Biotechnol., 8, pp. 281-295 
504 |a Chandler, S., Van Hese, N., Coutte, F., Jacques, P., Höfte, M., De Vleesschauwer, D., Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.) (2015) Physiol. Mol. Plant Pathol., 91, pp. 20-30 
504 |a Chen, Y., Gao, X., Chen, Y., Qin, H., Huang, L., Han, Q., Inhibitory efficacy of endophytic Bacillus subtilis EDR4 against Sclerotinia sclerotiorum on rapeseed (2014) Biol. Control, 78, pp. 67-76 
504 |a Coley-Smith, J.R., Cooke, R.C., Survival and germination of fungal sclerotia (1971) Annu. Rev. Phytopathol., 9, pp. 65-92 
504 |a Correa, B.O., Schafer, J.T., Moura, A.B., Spectrum of biocontrol bacteria to control leaf, root and vascular diseases of dry bean (2014) Biol. Control, 72, pp. 71-75 
504 |a Daffonchio, D., Borin, S., Frova, G., Manachini, P., Sorlini, C., PCR fingerprinting of whole genomes: the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveals a different intraespecific genomic variability of Bacillus cereus and Bacillus licheniformis (1998) Int. J. Syst. Bacteriol., 48, pp. 107-116 
504 |a De Bernardi, L.A., Perfil del Poroto, Gacetilla Informativa del Sector Agrícola (2016) Newsletter n°, p. 83 
504 |a Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., InfoStat Versión 2012 (2012), Grupo InfoStat, FCA, Universidad Nacional de Córdoba Argentina; El Arbi, A., Rochex, A., Chataign, G., Béchet, M., Lecouturier, D., Arnauld, S., Gharsallah, N., Jacques, P., The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides (2016) Res. Microbiol., 167, pp. 46-57 
504 |a Elkahouia, S., Djébali, N., Karkouch, I., Hadj Ibrahim, A., Kalai, L., Bachkouel, S., Tabbene, O., Limam, F., Mass spectrometry identification of antifungal lipopeptides from Bacillus sp: BCLRB2 against Rhizoctonia solani and Sclerotinia Sclerotiorum (2014) Appl. Biochem. Microbiol., 50, pp. 161-165 
504 |a Elsheshtawi, M., Elkhaky, M., Sayed, S.R., Bahkali, A.H., Mohammed, A.A., Gambhir, D., Mansour, A.S., Elgorban, A.M., Integrated control of white rot disease on beans caused by Sclerotinia sclerotiorum using Contans and reduced fungicides application (2017) Saudi J. Biol. Sci., 24, pp. 405-409 
504 |a Falardeau, J., Wise, C., Novitsky, L., Avis, T.J., Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens (2013) J. Chem. Ecol., 39, pp. 869-878 
504 |a Fernando, W.G.D., Nakkeeran, S., Zhang, Y., Savchuk, S., Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals (2007) Crop Prot., 26, pp. 100-107 
504 |a Goldstein, A.H., Bacterial solubilization of mineral phosphates: historical perspective and future prospects (1986) Am. J. Altern. Agric., 1, pp. 51-57 
504 |a Guetsky, R., Shtienberg, D., Elad, Y., Dinoor, A., Combining biocontrol agents to reduce the variability of biological control (2001) Phytopathology, 91, pp. 621-627 
504 |a Hathout, Y., Ho, Y.P., Ryzhov, V., Demirev, P., Fenselau, C., Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis (2000) J. Nat. Prod., 63, pp. 1492-1496 
504 |a Hu, X., Roberts, D.P., Xie, L., Maul, J.E., Yu, C., Li, Y., Jiang, M., Liao, X., Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field (2014) Biol. Control, 70, pp. 54-64 
504 |a Jakab, A., Szabó, A., Kovács, Z., Kátai, J., The effect of alternative methods of nutrient supply on some microbiological characteristics of a chernozem soil (2011) Analele Universitât;ii din Oradea Fascicula: Protectia Mediului, 17, pp. 85-90 
504 |a Jetiyanon, K., Kloepper, J.W., Mixtures of plant growth-promoting rhizobacteria for induction of resistance against multiple plant disease (2002) Biol. Control, 24, pp. 285-291 
504 |a Koumoutsi, A., Chen, X.H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., Borriss, R., Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42 (2004) J. Bacteriol., 186, pp. 1084-1096 
504 |a Kumar, P., Dubey, R.C., Maheshwari, D.K., Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens (2012) Microbiol. Res., 167, pp. 493-499 
504 |a Kumar, P., Pandey, P., Dubey, R.C., Kumar Maheshwari, D., Bacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studies (2016) Rhizosphere, 2, pp. 13-23 
504 |a Laditi, M.A., Nwoke, O.C., Jemo, M., Abaidoo, R.C., Ogunjobi, A.A., Evaluation of microbial inoculants as biofertilizers for the improvement of growth and yield of soybean and maize crops in savanna soils (2012) Afr. J. Agric. Res., 7, pp. 405-413 
504 |a Landa, B., Hervas, A., Bettiol, W., Jiménez-Díaz, R., Antagonistic activity of bacteria from the chikpea rhizosphere against Fusarium oxysporum f. sp ciceris (1997) Phytoparasitica, 25, pp. 305-318 
504 |a Li, B., Li, Q., Xu, Z., Zhang, N., Shen, Q., Zhang, R., Response of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production (2014) Front. Microbiol., 5, p. 636 
504 |a Liu, J., Hagberg, I., Novitsky, L., Hadj-Moussa, H., Tyler, J.A., Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens (2014) Fungal Biol., 118, pp. 855-861 
504 |a Mamaní Gonzáles, S.Y., Vizgarra, O.N., Mendez, D.E., Espeche, C.M., Jalil, A.C., Ploper, L.D., Campaña de poroto 2015: resultado de ensayos y análisis de campaña, Reporte Agroindustrial (2015), EEAOC; McCreary, C.M., Depuydt, D., Vyn, R.J., Gillard, C.L., Fungicide efficacy of dry bean white mold [Sclerotinia sclerotiorum (Lib.) de Bary, causal organism] and economic analysis at moderate to high disease pressure (2016) Crop Prot., 82, pp. 75-81 
504 |a Miklas, P.N., Porter, L.D., Kelly, J.D., Myers, J.R., Characterization of white mold disease avoidance in common bean (2013) Eur. J. Plant Pathol., 135, pp. 525-543 
504 |a Miller, J.H., Experiments in Molecular Genetics (1972), Cold Spring Harbor Laboratory Cold Spring Harbor p 466; Nonami, H., Fukui, S., Erra-Balsells, R., β-Carboline alkaloids as matrices for matrix-assisted Ultraviolet Laser Desorption Time-of flight Mass Spectrometry of proteins and sulfated oligosaccharides: a comparative study using phenylcarbonyl compounds, carbazoles and classical matrices (1997) J. Mass Spectrom., 32, pp. 287-296 
504 |a Ongena, M., Jacques, P., Bacillus lipopeptides: versatile weapons for plant disease biocontrol (2008) Trends Microbiol., 16, pp. 115-125 
504 |a Pérez-García, A., Romero, D., de Vicente, A., Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture (2011) Curr. Opin. Biotechnol., 22, pp. 187-193 
504 |a Parsa, S., García-Lemos, A.M., Castillo, K., Ortiz, V., Lopez-Lavalle, L.A.B., Braun, J., Vega, F.E., Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris (2016) Fungal Biol., 120, pp. 783-790 
504 |a Pathak, K.V., Keharia, H., Gupta, K., Thakur, S.S., Balaram, P., Lipopeptides from the banyan endophyte, Bacillus subtillis K1: mass spectrometric characterization of a library of engycins (2012) J. Am. Soc. Spectrom, 23, pp. 1716-1728 
504 |a Patten, C.L., Glick, B.R., Bacterial biosynthesis of indole-3-acetic acid (1996) Can. J. Microbiol., 42, pp. 207-220 
504 |a Price, N.P., Rooney, A.P., Swezey, J.L., Perry, E., Cohan, F.M., Mass spectrometric analyses of lipopeptides from Bacillus strains isolated from diverse geographical locations (2007) FEMS Microbiol. Lett., 271, pp. 83-89 
504 |a Royse, D.J., Ries, S.M., The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta (1978) Pyhtopathology, 68, pp. 603-607 
504 |a Sabaté, D.C., Pérez Brandan, C., Petroselli, G., Erra-Balsells, R., Audisio, M.C., Decrease in the incidence of charcoal root rot in common bean (Phaseolus vulgaris L.) by Bacillus amyloliquefaciens B14, a strain with PGPR properties (2017) Biol. Control, 113, pp. 1-8 
504 |a Schenck zu Schweinsberg-Mickan, M., Müller, T., Impact of effective microorganisms and other biofertilizers on soil microbial characteristics, organic-matter decomposition, and plant growth (2009) J. Plant Nutr. Soil Sci., 172, pp. 704-712 
504 |a Stefan, M., Munteanu, N., Stoleru, V., Mihasan, M., Hritcu, L., Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.) (2013) Sci. Hort., 151, pp. 22-29 
504 |a Stein, T., Bacillus subtilis antibiotics: structures, syntheses and specific functions (2005) Mol. Microbiol., 56, pp. 845-857 
504 |a Sun, G., Yao, T., Feng, C., Chen, L., Li, J., Wang, L., Identification and biocontrol potential of antagonistic bacteria strains against Sclerotinia sclerotiorum and their growth-promoting effects on Brassica napus (2017) Biol. Control, 104, pp. 35-43 
504 |a Thais, R.S., Grabowski, C., Rossato, M., Romeiro, R.S., Mizubuti, E.S.G., Biological control of eucalyptus bacterial wilt with rhizobacteria (2015) Biol. Control, 80, pp. 14-22 
504 |a Thimon, L., Peypoux, F., Maget-Dana, R., Roux, B., Michel, G., Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis (1992) Biotechnol. Appl. Biochem., 16, pp. 144-151 
504 |a Torres, M.J., Petroselli, G., Daz, M., Erra-Balsells, R., Audisio, M.C., Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds (2015) World J. Microbiol. Biotechnol., 31, pp. 929-940 
504 |a Torres, M.J., Pérez Brandan, C., Petroselli, G., Erra-Balsells, R., Audisio, M.C., Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds (2016) Microbiol. Res., 182, pp. 31-39 
504 |a Torres, M.J., Pérez Brandan, C., Sabaté, D.C., Petroselli, G., Erra-Balsells, R., Audisio, M.C., Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L., pathogens (2017) Biol. Control, 105, pp. 93-99 
504 |a Vargas Gil, J.R., Culto, J.P., Quiroga, I., Corvalán, E., Nieva, J.J., Nuñe, P., Chachaua, G., Atlas de los Suelos de la República Argentina. Tomo II. Salta. Secretaría de Agricultura, Ganadería y Pesca, Proy (1990) PNUD Arg., 85, pp. 289-350 
504 |a Vater, J., Kablitz, B., Wilde, C., Franke, P., Mehta, N., Cameotra, S.S., Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge (2002) Appl. Environ. Microbiol., 68, pp. 6210-6219 
504 |a Vieira, R.T., Paula Júnior Teixeira, H., Carneiro, J., White mold management in common bean by increasing within-row distance between plants (2010) Plant Dis., 94, pp. 361-367 
504 |a Vizgarra, O.N., Mamaní Gonzáles, S., Poroto (Phaseolus vulgaris L.): Manejo y recomendaciones. 4° Congreso de Cultivos de Verano (2012), EEAOC; Wilcoxson, R.D., Skovmand, B., Atif, A.H., Evaluation of wheat cultivars for ability to retard development of stem rust (1975) Ann. Appl. Biol., 80, pp. 275-281 
504 |a Yánez-Mendizábal, V., Zeriouh, H., Vinas, I., Torres, R., Usall, J., Vicente, A., Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on productionoffengycin-like lipopeptides (2011) Eur. J. Plant Pathol., 132, pp. 609-619 
504 |a Zhou, T., Boland, G.J., Biological control strategies for Sclerotinia diseases (1998) Plant-Microbe Interactions and Biological Control, pp. 127-156. , G.J. Boland L.D. Kuykendall Marcel Dekker New York 
504 |a Zouari, I., Jlaiel, J., Tounsi, S., Trigui, M., Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds (2016) Biol. Control, 100, pp. 54-62 
504 |a de Brito Alvarez, M., Gagne, A.G., Antoun, H., Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria (1995) Appl. Environ. Microbiol., 61, pp. 194-199 
520 3 |a Bacillus sp. B19, Bacillus sp. P12 and B. amyloliquefaciens B14 were isolated from soils of Salta province, and PGPR properties on the common bean (Phaseolus vulgaris L.) cv. Alubia and antagonistic activity against Sclerotinia sclerotiorum were studied. It was determined that B19 and P12 increased crop germination potential (GP) from the common bean by 14.5% compared to control seeds; these strains also increased root length (10.4 and 15%, respectively) and stem length (20.2 and 30%, respectively) compared to the control; however, as for the B14 strain, no increases in growth parameters were detected. In addition, all the treatments that combined two bacilli: B14 + B19, B14 + P12 and B19 + P12, generated beneficial effects on GP and seedling growth compared to control seeds, but not compared to a single inoculant. B19 and P12 strains synthesized auxins at concentrations of 5.71 and 4.90 mg/mL, respectively, and it was qualitatively determined that they synthesize siderophores. In addition, previous studies have determined that B14 produces auxins in a concentration of 10.10 mg/mL, and qualitatively synthesizes siderophores. The phytosanitary state of the white bean cv. Alubia control seeds revealed bacterial contamination in 87% of all the evaluated seeds and different fungi such as Cladosporium sp., Fusarium sp., and Rhizopus sp. Bean seeds treated with B14, B19 or P12 showed no growth of contaminating bacteria or of pathogenic fungi; in fact, bacilli inoculum development was observed in all seeds. Additionally, B19, P12 and B14 strains inhibited in vitro the development of 9 native S. sclerotiorum strains isolated from the Salta region, with FI ranging between 60 and 100%. The three Bacillus strains synthesized different isoforms of the lipopeptides: surfactin, iturin, and fengycin in the presence of S. sclerotiorum, as determined by MALDI-TOF. In the in vivo trials, when common bean seeds were grown in soils contaminated with S. sclerotiorum, an incidence of 100% was determined when the seeds were not treated with any Bacillus. Seeds treated with the chemical fungicide and sown in S. sclerotiorum-infested soil did not produce seed emergence, while the inoculation of the seeds with B14 + P12, B14 + B19 or B19 + P12 reduced the effect of the pathogen by 46, 43 and 25%, respectively. Disease progression in B14 + P12 and B14 + B19 treatments was significantly lower than in the remaining treatments, with an AUDPC of 873.75 and 1071, respectively. © 2018 Elsevier GmbH  |l eng 
536 |a Detalles de la financiación: Instituto Nacional de Tecnología Agropecuaria, PE-Suelos 1134043 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 0072CO 
536 |a Detalles de la financiación: Consejo de Investigación, Universidad Nacional de Salta, A-1974 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2012-0888, PICT-2013-0634 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: National Science and Technology Development Agency 
536 |a Detalles de la financiación: The authors would like to thank CIUNSa: Consejo de Investigación de la Universidad Nacional de Salta (C-2453; A-1974), CONICET: Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (PIP 0072CO) and National Science and Technology Promotion Agency (ANPCyT) of Argentina for the financial support (PICT-2013-0634 and PICT 2012-0888) and the collaboration of the INTA PE-Suelos 1134043, directed by Dra. Silvina Vargas Gil. MC Audisio, DC Sabaté, R Erra-Basells and G Petroselli are Research Members of CONICET. The Ultraflex II (Bruker) TOF/TOF mass spectrometer was supported by a grant from ANPCYT, PME2003 No.125, CEQUIBIEM, DQB, FCEN, UBA. Appendix A 
593 |a Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Av. Bolivia 5150, Salta, 4400, Argentina 
593 |a Instituto Nacional de Tecnología Agropecuaria (INTA)-Estación Experimental Salta, Ruta Nacional 68 Km 172, Cerrillos, Salta, 4403, Argentina 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón II, 3er P., Ciudad Universitaria, Buenos Aires, 1428, Argentina 
593 |a CONICET, Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales, Pabellón II, 3er P., Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a BACILLUS 
690 1 0 |a BIOLOGICAL CONTROL 
690 1 0 |a LIPOPEPTIDES 
690 1 0 |a PHASEOLUS VULGARIS L. 
690 1 0 |a SCLEROTINIA SCLEROTIORUM 
690 1 0 |a BACILLI 
690 1 0 |a BACTERIOLOGY 
690 1 0 |a FUNGI 
690 1 0 |a SOILS 
690 1 0 |a ANTAGONISTIC ACTIVITY 
690 1 0 |a BACTERIAL CONTAMINATION 
690 1 0 |a BIOLOGICAL CONTROLS 
690 1 0 |a DISEASE PROGRESSION 
690 1 0 |a GERMINATION POTENTIAL 
690 1 0 |a LIPOPEPTIDES 
690 1 0 |a PHASEOLUS VULGARIS L 
690 1 0 |a SCLEROTINIA SCLEROTIORUM 
690 1 0 |a SEED 
690 1 0 |a BACTERIUM 
690 1 0 |a BIOCONTROL AGENT 
690 1 0 |a BIOLOGICAL CONTROL 
690 1 0 |a CONCENTRATION (COMPOSITION) 
690 1 0 |a FUNGICIDE 
690 1 0 |a FUNGUS 
690 1 0 |a GROWTH 
690 1 0 |a INOCULATION 
690 1 0 |a LEGUME 
690 1 0 |a PEPTIDE 
690 1 0 |a PESTICIDE APPLICATION 
690 1 0 |a SEEDLING 
690 1 0 |a SIDEROPHORE 
690 1 0 |a BACILLI (CLASS) 
690 1 0 |a BACILLUS (BACTERIUM) 
690 1 0 |a BACILLUS AMYLOLIQUEFACIENS 
690 1 0 |a BACILLUS SP. 
690 1 0 |a BACTERIA (MICROORGANISMS) 
690 1 0 |a CLADOSPORIUM 
690 1 0 |a FUNGI 
690 1 0 |a FUSARIUM SP. 
690 1 0 |a PHASEOLUS VULGARIS 
690 1 0 |a RHIZOPUS 
690 1 0 |a SCLEROTINIA SCLEROTIORUM 
690 1 0 |a CYCLOPEPTIDE 
690 1 0 |a FENGYCIN 
690 1 0 |a FUNGICIDE 
690 1 0 |a INDOLEACETIC ACID DERIVATIVE 
690 1 0 |a LIPOPEPTIDE 
690 1 0 |a RNA 16S 
690 1 0 |a SIDEROPHORE 
690 1 0 |a ASCOMYCETES 
690 1 0 |a BACILLUS 
690 1 0 |a BACTERIUM 
690 1 0 |a BIOLOGICAL CONTROL AGENT 
690 1 0 |a CHEMISTRY 
690 1 0 |a CLASSIFICATION 
690 1 0 |a DISK DIFFUSION 
690 1 0 |a DRUG EFFECT 
690 1 0 |a FABACEAE 
690 1 0 |a GENETICS 
690 1 0 |a GERMINATION 
690 1 0 |a GROWTH, DEVELOPMENT AND AGING 
690 1 0 |a ISOLATION AND PURIFICATION 
690 1 0 |a METABOLISM 
690 1 0 |a MICROBIOLOGY 
690 1 0 |a PHYLOGENY 
690 1 0 |a PLANT DEVELOPMENT 
690 1 0 |a PLANT DISEASE 
690 1 0 |a PLANT SEED 
690 1 0 |a PREVENTION AND CONTROL 
690 1 0 |a ASCOMYCOTA 
690 1 0 |a BACILLUS 
690 1 0 |a BACTERIA 
690 1 0 |a BIOLOGICAL CONTROL AGENTS 
690 1 0 |a DISK DIFFUSION ANTIMICROBIAL TESTS 
690 1 0 |a FABACEAE 
690 1 0 |a FUNGICIDES, INDUSTRIAL 
690 1 0 |a GERMINATION 
690 1 0 |a INDOLEACETIC ACIDS 
690 1 0 |a LIPOPEPTIDES 
690 1 0 |a PEPTIDES, CYCLIC 
690 1 0 |a PHYLOGENY 
690 1 0 |a PLANT DEVELOPMENT 
690 1 0 |a PLANT DISEASES 
690 1 0 |a RNA, RIBOSOMAL, 16S 
690 1 0 |a SEEDS 
690 1 0 |a SIDEROPHORES 
651 4 |a ARGENTINA 
651 4 |a SALTA [ARGENTINA] 
700 1 |a Brandan, C.P. 
700 1 |a Petroselli, G. 
700 1 |a Erra-Balsells, R. 
700 1 |a Audisio, M.C. 
773 0 |d Elsevier GmbH, 2018  |g v. 211  |h pp. 21-30  |p Microbiol Res.  |x 09445013  |t Microbiological Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045566589&doi=10.1016%2fj.micres.2018.04.003&partnerID=40&md5=deb2cc8cdf059a283b4c3c00479055bd  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.micres.2018.04.003  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09445013_v211_n_p21_Sabate  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09445013_v211_n_p21_Sabate  |y Registro en la Biblioteca Digital 
961 |a paper_09445013_v211_n_p21_Sabate  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77850