Characterization and electrochemical response of DNA functionalized 2 nm gold nanoparticles confined in a nanochannel array

Polyvalent gold nanoparticle oligonucleotide conjugates are subject of intense research. Even though 2 nm diameter AuNPs have been previously modified with DNA, little is known about their structure and electrochemical behavior. In this work, we examine the influence of different surface modificatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Peinetti, A.S
Otros Autores: Ceretti, H., Mizrahi, M., González, Graciela Alicia, Ramírez, S.A, Requejo, Félix Gregorio, Montserrat, J.M, Battaglini, Fernando
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14896caa a22017177a 4500
001 PAPER-16896
003 AR-BaUEN
005 20250908092241.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85042052421 
024 7 |2 cas  |a aluminum oxide, 1302-74-5, 1318-23-6, 1344-28-1, 14762-49-3; DNA, 9007-49-2; sulfur, 13981-57-2, 7704-34-9; gold, 7440-57-5; Aluminum Oxide; DNA; Gold; Immobilized Nucleic Acids 
030 |a BIOEF 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Peinetti, A.S. 
245 1 0 |a Characterization and electrochemical response of DNA functionalized 2 nm gold nanoparticles confined in a nanochannel array 
260 |b Elsevier B.V.  |c 2018 
270 1 0 |m Battaglini, F.; INQUIMAE (CONICET), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Argentina; email: battagli@qi.fcen.uba.ar 
504 |a Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology (2005) Chem. Rev., 105, pp. 1103-1170 
504 |a Millan, K.M., Saraullo, A., Mikkelsen, S.R., Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode (1994) Anal. Chem., 66, pp. 2943-2948 
504 |a Wang, J., Cai, X., Rivas, G., Shiraishi, H., Stripping potentiometric transduction of DNA hybridization processes (1996) Anal. Chim. Acta, 326, pp. 141-147 
504 |a Teles, F.R.R., Fonseca, L.P., Trends in DNA biosensors (2008) Talanta, 77, pp. 606-623 
504 |a Li, F., Peng, J., Zheng, Q., Guo, X., Tang, H., Yao, S., Carbon nanotube-polyamidoamine dendrimer hybrid-modified electrodes for highly sensitive electrochemical detection of MicroRNA24 (2015) Anal. Chem., 87, pp. 4806-4813 
504 |a Abdul Rasheed, P., Sandhyarani, N., Quartz crystal microbalance genosensor for sequence specific detection of attomolar DNA targets (2016) Anal. Chim. Acta, 905, pp. 134-139 
504 |a Luzi, E., Minunni, M., Tombelli, S., Mascini, M., New trends in affinity sensing: aptamers for ligand binding (2003) TrAC Trends Anal. Chem., 22, pp. 810-818 
504 |a Guo, Q., Bao, Y., Yang, X., Wang, K., Wang, Q., Tan, Y., Amplified electrochemical DNA sensor using peroxidase-like DNAzyme (2010) Talanta, 83, pp. 500-504 
504 |a Cui, L., Peng, R., Fu, T., Zhang, X., Wu, C., Chen, H., Liang, H., Tan, W., Biostable L-DNAzyme for sensing of metal ions in biological systems (2016) Anal. Chem., 88, pp. 1850-1855 
504 |a Ozalp, V.C., Acoustic quantification of ATP using a quartz crystal microbalance with dissipation (2011) Analyst, 136, pp. 5046-5050 
504 |a Papadakis, G., Tsortos, A., Bender, F., Ferapontova, E.E., Gizeli, E., Direct detection of DNA conformation in hybridization processes (2012) Anal. Chem., 84, pp. 1854-1861 
504 |a Ceretti, H., Ponce, B., Ramírez, S.A., Montserrat, J.M., Adenosine reagentless electrochemical aptasensor using a phosphorothioate immobilization strategy (2010) Electroanalysis, 22, pp. 147-150 
504 |a Zhang, X., Yadavalli, V.K., Surface immobilization of DNA aptamers for biosensing and protein interaction analysis (2011) Biosens. Bioelectron., 26, pp. 3142-3147 
504 |a Li, Z., Zhang, L., Mo, H., Peng, Y., Zhang, H., Xu, Z., Zheng, C., Lu, Z., Size-fitting effect for hybridization of DNA/mercaptohexanol mixed monolayers on gold (2014) Analyst, 139, pp. 3137-3145 
504 |a Peinetti, A.S., Ceretti, H., Mizrahi, M., González, G.A., Ramírez, S.A., Requejo, F.G., Montserrat, J.M., Battaglini, F., Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors (2015) Nanoscale, 7, pp. 7763-7769 
504 |a Campos, R., Kotlyar, A., Ferapontova, E.E., DNA-mediated electron transfer in DNA duplexes tethered to gold electrodes via phosphorothioated dA tags (2014) Langmuir, 30, pp. 11853-11857 
504 |a Zhou, W., Wang, F., Ding, J., Liu, J., Tandem phosphorothioate modifications for DNA adsorption strength and polarity control on gold nanoparticles (2014) ACS Appl. Mater. Interfaces, 6, pp. 14795-14800 
504 |a Lee, J.-S., Seferos, D.S., Giljohann, D.A., Mirkin, C.A., Thermodynamically controlled separation of polyvalent 2-nm gold nanoparticle-oligonucleotide conjugates (2008) J. Am. Chem. Soc., 130, pp. 5430-5431 
504 |a Gonzalez Solveyra, E., Szleifer, I., What is the role of curvature on the properties of nanomaterials for biomedical applications? (2016) Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 8, pp. 334-354 
504 |a Peinetti, A.S., Herrera, S., Gonzalez, G.A., Battaglini, F., Synthesis of atomic metal clusters on nanoporous alumina (2013) Chem. Commun., 49, pp. 11317-11319 
504 |a Huizenga, D.E., Szostak, J.W., A DNA aptamer that binds adenosine and ATP (1995) Biochemistry, 34, pp. 656-665 
504 |a Ulman, A., Formation and structure of self-assembled monolayers (1996) Chem. Rev., 96, pp. 1533-1554 
504 |a Ravel, B., Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT (2005) J. Synchrotron Radiat., 12, pp. 537-541 
504 |a Li, Z., Jin, R., Mirkin, C.A., Letsinger, R.L., Multiple thiol-anchor capped DNA–gold nanoparticle conjugates (2002) Nucleic Acids Res., 30, pp. 1558-1562 
504 |a Ramallo-López, J.M., Giovanetti, L.J., Requejo, F.G., Isaacs, S.R., Shon, Y.S., Salmeron, M., Molecular conformation changes in alkylthiol ligands as a function of size in gold nanoparticles: X-ray absorption studies (2006) Phys. Rev. B, 74 
504 |a Lewis, D.J., Day, T.M., MacPherson, J.V., Pikramenou, Z., Luminescent nanobeads: attachment of surface reactive Eu(iii) complexes to gold nanoparticles (2006) Chem. Commun., p. 1433 
504 |a Strong, L., Whitesides, G.M., Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies (1988) Langmuir, 4, pp. 546-558 
504 |a Katz, E., Willner, I., Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors (2003) Electroanalysis, 15, pp. 913-947 
504 |a Zen, K., Zhang, C.-Y., Circulating MicroRNAs: a novel class of biomarkers to diagnose and monitor human cancers (2012) Med. Res. Rev., 32, pp. 326-348 
504 |a Hermann, T., Patel, D.J., Adaptive recognition by nucleic acid aptamers (2000) Science, 287, pp. 820-825. , http://science.sciencemag.org/content/287/5454/820.abstract 
504 |a Owczarzy, R., Moreira, B.G., You, Y., Behlke, M.A., Walder, J.A., Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations (2008) Biochemistry, 47, pp. 5336-5353 
504 |a SantaLucia, J., Hicks, D., The thermodynamics of DNA structural motifs (2004) Annu. Rev. Biophys. Biomol. Struct., 33, pp. 415-440 
504 |a Rodriguez, M.C., Kawde, A.-N., Wang, J., Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge (2005) Chem. Commun., pp. 4267-4269 
504 |a Peinetti, A.S., Gilardoni, R.S., Mizrahi, M., Requejo, F.G., González, G.A., Battaglini, F., Numerical simulation of the diffusion processes in nanoelectrode arrays using an axial neighbor symmetry approximation (2016) Anal. Chem., 88, pp. 5752-5759 
504 |a Fleischmann, M., Pons, S., The behavior of microdisk and microring electrodes. Mass transport to the disk in the unsteady state: The ac response (1988) J. Electroanal. Chem. Interfacial Electrochem., 250, pp. 277-283 
504 |a Ferrigno, R., Girault, H.H., Finite element simulation of electrochemical ac diffusional impedance. Application to recessed microdiscs (2000) J. Electroanal. Chem., 492, pp. 1-6 
504 |a Rezaei Niya, S.M., Hoorfar, M., On a possible physical origin of the constant phase element (2016) Electrochim. Acta, 188, pp. 98-102 
504 |a Song, H.-K., Hwang, H.-Y., Lee, K.-H., Dao, L.H., The effect of pore size distribution on the frequency dispersion of porous electrodes (2000) Electrochim. Acta, 45, pp. 2241-2257 
504 |a Lin, C.H., Patel, D.J., Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP (1997) Chem. Biol., 4, pp. 817-832 
504 |a Berg, J.M., Tymoczko, J.L., Gatto, G.J., Stryer, L., Biochemistry (2015), 8th ed. W.H. Freeman New York; Jiang, L., Zhang, H., Zhuang, J., Yang, B., Yang, W., Li, T., Sun, C., Sterically mediated two-dimensional architectures in aggregates of au nanoparticles directed by phosphorothioate oligonucleotide-DNA (2005) Adv. Mater., 17, pp. 2066-2070 
504 |a Sheehan, P.E., Whitman, L.J., Detection limits for nanoscale biosensors (2005) Nano Lett., 5, pp. 803-807 
504 |a Squires, T.M., Messinger, R.J., Manalis, S.R., Making it stick: convection, reaction and diffusion in surface-based biosensors (2008) Nat. Biotechnol., 26, pp. 417-426 
504 |a Wang, X., Smirnov, S., Label-free DNA sensor based on surface charge modulated ionic conductance (2009) ACS Nano, 3, pp. 1004-1010 
506 |2 openaire  |e Política editorial 
520 3 |a Polyvalent gold nanoparticle oligonucleotide conjugates are subject of intense research. Even though 2 nm diameter AuNPs have been previously modified with DNA, little is known about their structure and electrochemical behavior. In this work, we examine the influence of different surface modification strategies on the interplay between the meso-organization and the molecular recognition properties of a 27-mer DNA strand. This DNA strand is functionalized with different sulfur-containing moieties and immobilized on 2 nm gold nanoparticles confined on a nanoporous alumina, working the whole system as an electrode array. Surface coverages were determined by EXAFS and the performance as recognition elements for impedance-based sensors is evaluated. Our results prove that low DNA coverages on the confined nanoparticles prompt to a more sensitive response, showing the relevance in avoiding the DNA strand overcrowding. The system was able to determine a concentration as low as 100 pM of the complementary strand, thus introducing the foundations for the construction of label-free genosensors at the nanometer scale. © 2017 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Organisation for the Prohibition of Chemical Weapons 
536 |a Detalles de la financiación: Universidad de Buenos Aires, PIP-1035, 17189, PICT-2011-0367 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This work was financially supported by the following grants: UBACYT 20020130100262BA ( Universidad de Buenos Aires ), XAFS2 beamline ( LNLS , Brazil) proposal 17189 , PICT-2011-0367 , PIP-1035 ( CONICET ), OPCW and UNGS. MM., GAG., FGR, JMM and FB are CONICET members. 
593 |a INQUIMAE (CONICET), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina 
593 |a Universidad Nacional de Gral. Sarmiento, J. M. Gutierrez 1150, Los Polvorines, Prov. de Bs. As. B1613GSX, Argentina 
593 |a Instituto de Investigaciones Físicoquímicas Teóricas y Aplicadas – INIFTA, CONICET y Dto. Química, Fac. Cs Ex, UNLP, La Plata, 1900, Argentina 
690 1 0 |a ALUMINA 
690 1 0 |a FIBER OPTIC SENSORS 
690 1 0 |a GOLD 
690 1 0 |a METAL NANOPARTICLES 
690 1 0 |a NANOPARTICLES 
690 1 0 |a OLIGONUCLEOTIDES 
690 1 0 |a SURFACE TREATMENT 
690 1 0 |a COMPLEMENTARY STRAND 
690 1 0 |a CONFINED NANOPARTICLES 
690 1 0 |a ELECTROCHEMICAL BEHAVIORS 
690 1 0 |a ELECTROCHEMICAL RESPONSE 
690 1 0 |a IMPEDANCE BASED SENSORS 
690 1 0 |a MOLECULAR RECOGNITION PROPERTIES 
690 1 0 |a NANO-CHANNEL ARRAYS 
690 1 0 |a OLIGONUCLEOTIDE CONJUGATES 
690 1 0 |a DNA 
690 1 0 |a ALUMINUM OXIDE 
690 1 0 |a DNA 
690 1 0 |a ELEMENT 
690 1 0 |a GOLD NANOPARTICLE 
690 1 0 |a NANOCHANNEL 
690 1 0 |a SULFUR 
690 1 0 |a SULFUR DERIVATIVE 
690 1 0 |a DNA 
690 1 0 |a GOLD 
690 1 0 |a IMMOBILIZED NUCLEIC ACID 
690 1 0 |a METAL NANOPARTICLE 
690 1 0 |a NANOMATERIAL 
690 1 0 |a ARTICLE 
690 1 0 |a CLINICAL EVALUATION 
690 1 0 |a CONCENTRATION PROCESS 
690 1 0 |a CONJUGATION 
690 1 0 |a DNA PROBE 
690 1 0 |a DNA SEQUENCE 
690 1 0 |a DNA STRAND 
690 1 0 |a ELECTROCHEMICAL ANALYSIS 
690 1 0 |a ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY 
690 1 0 |a IMMOBILIZATION 
690 1 0 |a IMPEDANCE 
690 1 0 |a MOLECULAR RECOGNITION 
690 1 0 |a NANOCHANNEL ARRAY 
690 1 0 |a PARTICLE SIZE 
690 1 0 |a SENSITIVITY ANALYSIS 
690 1 0 |a SURFACE AREA 
690 1 0 |a CHEMISTRY 
690 1 0 |a ELECTROCHEMICAL ANALYSIS 
690 1 0 |a ELECTRODE 
690 1 0 |a GENETIC PROCEDURES 
690 1 0 |a NUCLEIC ACID HYBRIDIZATION 
690 1 0 |a POROSITY 
690 1 0 |a PROCEDURES 
690 1 0 |a ALUMINUM OXIDE 
690 1 0 |a BIOSENSING TECHNIQUES 
690 1 0 |a DNA 
690 1 0 |a ELECTROCHEMICAL TECHNIQUES 
690 1 0 |a ELECTRODES 
690 1 0 |a GOLD 
690 1 0 |a IMMOBILIZED NUCLEIC ACIDS 
690 1 0 |a METAL NANOPARTICLES 
690 1 0 |a NANOSTRUCTURES 
690 1 0 |a NUCLEIC ACID HYBRIDIZATION 
690 1 0 |a POROSITY 
700 1 |a Ceretti, H. 
700 1 |a Mizrahi, M. 
700 1 |a González, Graciela Alicia 
700 1 |a Ramírez, S.A. 
700 1 |a Requejo, Félix Gregorio 
700 1 |a Montserrat, J.M. 
700 1 |a Battaglini, Fernando 
773 0 |d Elsevier B.V., 2018  |g v. 121  |h pp. 169-175  |p Bioelectrochemistry  |x 15675394  |w (AR-BaUEN)CENRE-3947  |t Bioelectrochemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042052421&doi=10.1016%2fj.bioelechem.2018.02.002&partnerID=40&md5=9444f038d00ce216fba2ea4024a0d2a7  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.bioelechem.2018.02.002  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15675394_v121_n_p169_Peinetti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15675394_v121_n_p169_Peinetti  |y Registro en la Biblioteca Digital 
961 |a paper_15675394_v121_n_p169_Peinetti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77849