On the binding of folic acid to food proteins performing as vitamin micro/nanocarriers

Folic acid (FA) encapsulation in protein matrices has been reported as a suitable method for preventing FA degradation upon storage or processing as well as to improve its bioavailability. The ability of β-lactoglobulin (β-lg) and type A gelatin (G) to bind FA and form nano/microparticles under cond...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zema, P.
Otros Autores: Pilosof, A.M.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2018
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13297caa a22009377a 4500
001 PAPER-16894
003 AR-BaUEN
005 20230518204757.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85044451193 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a FOHYE 
100 1 |a Zema, P. 
245 1 3 |a On the binding of folic acid to food proteins performing as vitamin micro/nanocarriers 
260 |b Elsevier B.V.  |c 2018 
270 1 0 |m Pilosof, A.M.R.; Departamento de Industrias- ITAPROQ, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Argentina; email: apilosof@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Akhtar, M.J., Khan, M.A., Ahmad, I., Photodegradation of folic acid in aqueous solution (1999) Journal of Pharmaceutical and Biomedical Analysis, 19 (3-4), pp. 269-275 
504 |a Akhtar, M.J., Khan, M.A., Ahmad, I., Identification of photoproducts of folic acid and its degradation pathways in aqueous solution (2003) Journal of Pharmaceutical and Biomedical Analysis, 31 (3), pp. 579-588 
504 |a Alborzi, S., Lim, L.-T., Kakuda, Y., Encapsulation of folic acid and its stability in sodium alginate-pectin-poly(ethylene oxide) electrospun fibres (2013) Journal of Microencapsulation, 30 (1), pp. 64-71. , https://doi.org/10.3109/02652048.2012.696153 
504 |a Arzeni, C., Martínez, K., Zema, P., Arias, A., Pérez, O.E., Pilosof, A.M.R., Comparative study of high intensity ultrasound effects on food proteins functionality (2012) Journal of Food Engineering, 108 (3), pp. 463-472. , https://doi.org/10.1016/j.jfoodeng.2011.08.018 
504 |a Arzeni, C., Pérez, O.E., LeBlanc, J.G., Pilosof, A.M.R., Egg albumin–folic acid nanocomplexes: Performance as a functional ingredient and biological activity (2015) Journal of Functional Foods, 18, pp. 379-386. , https://doi.org/10.1016/j.jff.2015.07.018, Part A 
504 |a Arzeni, C., Pérez, O.E., Pilosof, A.M.R., Power ultrasound assisted design of egg albumin nanoparticles (2015) Food Biophysics, 10 (4), pp. 439-446. , https://doi.org/10.1007/s11483-015-9407-2 
504 |a Ball, G.F.M., Folate (1998) Bioavailability and analysis of vitamins in foods, pp. 439-496. , http://www.springer.com/in/book/9780412780905, Chapman and Hall Retrieved from 
504 |a Behrend, O., Ax, K., Schubert, H., Influence of continuous phase viscosity on emulsification by ultrasound (2000) Ultrasonics Sonochemistry, 7 (2), pp. 77-85 
504 |a Bourassa, P., Hasni, I., Tajmir-Riahi, H.A., Folic acid complexes with human and bovine serum albumins (2011) Food Chemistry, 129 (3), pp. 1148-1155. , https://doi.org/10.1016/j.foodchem.2011.05.094 
504 |a Bourassa, P., Tajmir-Riahi, H.A., Locating the binding sites of folic acid with milk α- and β-caseins (2012) The Journal of Physical Chemistry B, 116 (1), pp. 513-519. , https://doi.org/10.1021/jp2083677 
504 |a Bromley, E.H., Krebs, M.R.H., Donald, A.M., Aggregation across the length-scales in beta-lactoglobulin (2005) Faraday Discussions, 128, pp. 13-27 
504 |a Das, K.P., Kinsella, J.E., pH dependent emulsifying properties of B-lactoglobulin (1989) Journal of Dispersion Science and Technology, 10 (1), pp. 77-102. , https://doi.org/10.1080/01932698908943160 
504 |a Farías, M.E., Martinez, M.J., Pilosof, A.M.R., Casein glycomacropeptide pH-dependent self-assembly and cold gelation (2010) International Dairy Journal, 20 (2), pp. 79-88. , https://doi.org/10.1016/j.idairyj.2009.09.002 
504 |a Gordon, L., Pilosof, A.M.R., Application of high-intensity ultrasounds to control the size of whey proteins particles (2010) Food Biophysics, 5 (3), pp. 203-210. , https://doi.org/10.1007/s11483-010-9161-4 
504 |a Harnsilawat, T., Pongsawatmanit, R., McClements, D.J., Characterization of β-lactoglobulin–sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study (2006) Food Hydrocolloids, 20 (5), pp. 577-585. , https://doi.org/10.1016/j.foodhyd.2005.05.005 
504 |a Huang, X., Kakuda, Y., Cui, W., Hydrocolloids in emulsions: Particle size distribution and interfacial activity (2001) Food Hydrocolloids, 15 (4-6), pp. 533-542 
504 |a Jha, N.S., Kishore, N., Thermodynamic studies on the interaction of folic acid with bovine serum albumin (2011) The Journal of Chemical Thermodynamics, 43 (5), pp. 814-821. , https://doi.org/10.1016/j.jct.2010.12.024 
504 |a Leroux, J., Langendorff, V., Schick, G., Vaishnav, V., Mazoyer, J., Emulsion stabilizing properties of pectin (2003) Food Hydrocolloids, 17 (4), pp. 455-462 
504 |a Liang, L., Subirade, M., β-Lactoglobulin/Folic acid Complexes: Formation, characterization, and biological implication (2010) The Journal of Physical Chemistry B, 114 (19), pp. 6707-6712. , https://doi.org/10.1021/jp101096r 
504 |a Liang, L., Zhang, J., Zhou, P., Subirade, M., Protective effect of ligand-binding proteins against folic acid loss due to photodecomposition (2013) Food Chemistry, 141 (2), pp. 754-761. , https://doi.org/10.1016/j.foodchem.2013.03.044 
504 |a Livney, Y.D., Milk proteins as vehicles for bioactives (2010) Current Opinion in Colloid & Interface Science, 15 (1-2), pp. 73-83. , https://doi.org/10.1016/j.cocis.2009.11.002 
504 |a Martinez, M.J., Pilosof, A.M.R., On the relationship between pH-dependent β-lactoglobulin self assembly and gelation dynamics (2018) International Food Research Journal, , (in press) 
504 |a Molloy, A.M., Scott, J.M., Folates and prevention of disease (2001) Public Health Nutrition, 4 (2b), pp. 601-609. , https://doi.org/10.1079/PHN2001144 
504 |a Off, M.K., Steindal, A.E., Porojnicu, A.C., Juzeniene, A., Vorobey, A., Johnsson, A., Ultraviolet photodegradation of folic acid (2005) Journal of Photochemistry and Photobiology B: Biology, 80 (1), pp. 47-55. , https://doi.org/10.1016/j.jphotobiol.2005.03.001 
504 |a Papastoyiannidis, G., Polychroniadou, A., Michaelidou, A.-M., Alichanidis, E., Fermented milks fortified with B-group Vitamins: Vitamin stability and effect on resulting products (2006) Food Science and Technology International, 12 (6), pp. 521-529. , https://doi.org/10.1177/1082013206073274 
504 |a Peñalva, R., Esparza, I., Agüeros, M., Gonzalez-Navarro, C.J., Gonzalez-Ferrero, C., Irache, J.M., Casein nanoparticles as carriers for the oral delivery of folic acid (2015) Food Hydrocolloids, 44, pp. 399-406. , https://doi.org/10.1016/j.foodhyd.2014.10.004 
504 |a Peñalva, R., Esparza, I., González-Navarro, C.J., Quincoces, G., Peñuelas, I., Irache, J.M., Zein nanoparticles for oral folic acid delivery (2015) Journal of Drug Delivery Science and Technology, 30, pp. 450-457. , https://doi.org/10.1016/j.jddst.2015.06.012, Part B 
504 |a Pérez-Masiá, R., López-Nicolás, R., Periago, M.J., Ros, G., Lagaron, J.M., López-Rubio, A., Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications (2015) Food Chemistry, 168, pp. 124-133. , https://doi.org/10.1016/j.foodchem.2014.07.051 
504 |a Pérez, O.E., David-Birman, T., Kesselman, E., Levi-Tal, S., Lesmes, U., Milk protein–vitamin interactions: Formation of beta-lactoglobulin/folic acid nano-complexes and their impact on in vitro gastro-duodenal proteolysis (2014) Food Hydrocolloids, 38, pp. 40-47. , https://doi.org/10.1016/j.foodhyd.2013.11.010 
504 |a Refsum, H., Folate, vitamin B12 and homocysteine in relation to birth defects and pregnancy outcome (2001) British Journal of Nutrition, 85 (S2), pp. S109-S113. , https://doi.org/10.1049/BJN2000302 
504 |a Schrieber, R., Gareis, H., From collagen to gelatine (2007) Gelatine Handbook, pp. 45-117. , https://doi.org/10.1002/9783527610969.ch2, Wiley-VCH Verlag GmbH & Co. KGaA 
504 |a Stevanović, M., Radulović, A., Jordović, B., Uskoković, D., Poly(DL-lactide-co-glycolide) nanospheres for the sustained release of folic acid (2008) Journal of Biomedical Nanotechnology, 4 (3), pp. 349-358. , https://doi.org/10.1166/jbn.2008.321 
504 |a Tabata, Y., Ikada, Y., Protein release from gelatin matrices (1998) Advanced Drug Delivery Reviews, 31 (3), pp. 287-301 
504 |a Tsaih, M.L., Chen, R.H., Effect of degree of deacetylation of chitosan on the kinetics of ultrasonic degradation of chitosan (2003) Journal of Applied Polymer Science, 90 (13), pp. 3526-3531. , https://doi.org/10.1002/app.13027 
504 |a Uhrínová, S., Smith, M.H., Jameson, G.B., Uhrín, D., Sawyer, L., Barlow, P.N., Structural changes accompanying pH-induced dissociation of the β-lactoglobulin dimer † ‡ (2000) Biochemistry, 39 (13), pp. 3565-3574. , https://doi.org/10.1021/bi992629o 
504 |a Vora, A., Riga, A., Dollimore, D., Alexander, K.S., Thermal stability of folic acid (2002) Thermochimica Acta, 392-393, pp. 209-220 
504 |a Wu, Z., Li, X., Hou, C., Qian, Y., Solubility of folic acid in water at pH values between 0 and 7 at temperatures (298.15, 303.15, and 313.15) K (2010) Journal of Chemical & Engineering Data, 55 (9), pp. 3958-3961. , https://doi.org/10.1021/je1000268 
504 |a Zhang, A., Jia, L., Spectroscopic study of the interaction between folic acid and bovine serum albumin (2006) Spectroscopy Letters, 39 (4), pp. 285-298. , https://doi.org/10.1080/00387010600779112 
504 |a Zhang, Y., Li, J., Lang, M., Tang, X., Li, L., Shen, X., Folate-functionalized nanoparticles for controlled 5-Fluorouracil delivery (2011) Journal of Colloid and Interface Science, 354 (1), pp. 202-209. , https://doi.org/10.1016/j.jcis.2010.10.054 
504 |a Zhang, J., Liu, Y., Liu, X., Li, Y., Yin, X., Subirade, M., Liang, L., The folic acid/β-casein complex: Characteristics and physicochemical implications (2014) Food Research International, 57, pp. 162-167. , https://doi.org/10.1016/j.foodres.2014.01.019 
520 3 |a Folic acid (FA) encapsulation in protein matrices has been reported as a suitable method for preventing FA degradation upon storage or processing as well as to improve its bioavailability. The ability of β-lactoglobulin (β-lg) and type A gelatin (G) to bind FA and form nano/microparticles under conditions of concentration (up to 5% w/w) and pH (3–7) that could have a technological application has been studied. The degree of folic acid binding to the proteins depended on their pH-dependent ζ-potential, indicating the occurrence of ionic bonds. Regardless of FA concentration, the percentage of bound FA to β-lg or G was 100% at pH 3. At pH 3, the size of particles strongly increased by increasing the molar FA/protein ratio. Protein aggregation and further flocculation was observed at higher molar ratios. However, the size of particles could be modulated by high intensity ultrasound application. FA/protein particles formed at pH 3 were totally reversible by shifting back the pH to 7. This pH dependence is strongly favorable for the delivery of FA at the duodene (pH 7) and for the protection of FA at the pH prevailing in the stomach (pH 3). © 2018 Elsevier Ltd  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Universidad de Buenos Aires, 20020130100524BA 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, 11220110100317 
536 |a Detalles de la financiación: This research was supported by Universidad de Buenos Aires (Grant number: 20020130100524BA ), Consejo Nacional de Investigaciones Científicas y Técnicas ( CONICET ) (Grant number: 11220110100317 ) and Agencia Nacional de Promoción Científica y Tecnológica . 
593 |a Departamento de Industrias- ITAPROQ, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428)Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina 
690 1 0 |a AGGREGATION 
690 1 0 |a DELIVERY 
690 1 0 |a FOLIC ACID 
690 1 0 |a GELATIN 
690 1 0 |a Β-LACTOGLOBULIN 
650 1 7 |2 spines  |a PH 
700 1 |a Pilosof, A.M.R. 
773 0 |d Elsevier B.V., 2018  |g v. 79  |h pp. 509-517  |p Food Hydrocolloids  |x 0268005X  |w (AR-BaUEN)CENRE-4766  |t Food Hydrocolloids 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044451193&doi=10.1016%2fj.foodhyd.2018.01.021&partnerID=40&md5=551820f414b4b853cecfeba2235d74a9  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.foodhyd.2018.01.021  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0268005X_v79_n_p509_Zema  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0268005X_v79_n_p509_Zema  |y Registro en la Biblioteca Digital 
961 |a paper_0268005X_v79_n_p509_Zema  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 77847