Enhancement, suppression of the emission and the energy transfer by using a graphene subwavelength wire

The present work focuses on theoretically research on the spontaneous emission and the energy transfer process between two single optical emitters placed close to a graphene coated wire. The localized surface plasmons (LSPs) supported by the structure provide decay channels which lead to an enhancem...

Descripción completa

Detalles Bibliográficos
Autor principal: Cuevas, Mauro
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09280caa a22011537a 4500
001 PAPER-16870
003 AR-BaUEN
005 20250212090258.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85046102769 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Cuevas, Mauro 
245 1 0 |a Enhancement, suppression of the emission and the energy transfer by using a graphene subwavelength wire 
260 |b Elsevier Ltd  |c 2018 
270 1 0 |m Cuevas, M.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Argentina; email: cuevas@df.uba.ar 
504 |a Purcell, E.M., (1946) Phys Rev, 69, p. 674 
504 |a Carminati, R., Caze, A., Cao, A., Peragut, A., Krachmalnicoff, V., Pierrat, R., Wil, D., (2015) Surf Sci Rep, 70, pp. 1-41 
504 |a Muskens, O.L., Giannini, V., Sánchez-Gil, J.A., Rivas, J.G., (2007) Nano Lett, 7. , 2871–5 
504 |a Rogobete, L., Schniepp, H., Sandoghdar, V., Henkel, C., (2003) Opt Lett, 28, pp. 1623-1625 
504 |a Tame, M.S., McEnery, K.R., Özdemir, K., Lee, J., Maier, S.A., Kim, M.S., (2013) Nat Phys, 9, pp. 329-340 
504 |a Sokhoyan, R., Atwater, H.A., (2013) Optic Express, 21. , 32279–90 
504 |a Ginzburg, P., Roth, D.J., Nasir, M.E., Segovia, P., Krasavin, A.V., Levitt, J., Hirvonen, L.M., Zayats, A.V., (2017) Light, 6, p. e16273 
504 |a Mahmoud, A.M., Liberal, I., Engueta, N., (2017) Opt Mater Express, 7, pp. 415-424 
504 |a Karanikolas, V., Marocico, C.A., Bradley, A.L., (2014) Phys Rev A, 89, p. 063817 
504 |a Martín-Cano, D., Martín-Moreno, L., García-Vidal, F.J., Moreno, E., (2010) Nano Lett, 10, pp. 3129-3134 
504 |a Andrew, P., Barnes, W.L., (2004) Science, 306, pp. 1002-1005 
504 |a Akselrod, G.M., Argyropoulos, C., Hoang, T.B., Ciraci, C., Fang, C., Huang, J., Smith, D.R., Mikkelsen, M.H., (2014) Nat Photonics, 8, pp. 835-840 
504 |a Oulton, R.F., Sorger, V.J., Zentgraf, T., Ma, R., Gladden, C., Dai, L., Bartal, G., Zhang, X., (2009) Nature, 461, pp. 629-632 
504 |a Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D., (2007) Nature, 450, pp. 402-406 
504 |a Yang, X., Li, Y., Lou, Z., Chen, Q., Li, B., (2018) ACS Appl Energy Mater, 1, pp. 278-283 
504 |a Jablan, J., Soljacic, M., Buljan, H., (2013) Proc IEEE, 101, pp. 1689-1704 
504 |a Xia, F., (2013) Nat Photonics, 7, p. 420 
504 |a Christensen, T., From Classical to Quantum Plasmonics in Three and Two Dimensions (2017), Springer; Farmani, A., Zarifkar, A., Sheikhi, M.H., Miri, M., (2017) Superlattices Microstruct, 112, pp. 404-414 
504 |a Moradi, A., (2018) J Appl Phys, 123, p. 043103 
504 |a Cheng, Y., Yang, J., Lu, Q., Tang, H., Huang, M., (2016) Sensors, 16, p. 773 
504 |a Saavedra, J.R.M., de Abajo F. J., G., (2018) Appl Phys Lett, 112, p. 061107 
504 |a Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings (1988), Springer–Verlag Berlin; Maier, S.A., Plasmonics: Fundamentals and Applications (2007), Springer New York; Cuevas, M., Depine, R.A., (2009) Phys Rev Lett, 103, p. 097401 
504 |a Zeller, M., Cuevas, M., Depine, R.A., (2011) JOSA B, 28, pp. 2042-2047 
504 |a Farmani, A., Miri, M., Sheikhi, M.H., (2017) JOSA B, 34, pp. 1097-1106 
504 |a Cuevas, M., (2016) Phys Lett A, 380, pp. 4027-4031 
504 |a Slipchenko, T.M., Nesterov, M.L., Martin-Moreno, L., Nikitin, A.Y., (2013) J Opt, 15, p. 114008 
504 |a Ferreira, A., Peres, N.M.R., (2012) Phys Rev B, 86, p. 205401 
504 |a Biehs, S.A., Agarwal, G.S., (2013) Appl Phys Lett, 103, p. 243112 
504 |a Huidobro, P.A., Nikitin, A.Y., Gonzalez-Ballestero, C., Martín-Moreno, L., García-Vidal, F.J., (2012) Phys Rev B, 85, p. 155438 
504 |a Bian, T., Chang, R., Leung, P.T., (2016) Plasmonics, 11, pp. 1239-1246 
504 |a Karanikolas, V.D., Marocico, C.A., Bradley, A.L., (2016) Phys Rev B, 93, p. 035426 
504 |a Cuevas, M., (2016) J Opt, 18, p. 105003 
504 |a Cuevas, M., (2018) J Quant Spectrosc Radiat Transfer, 206, pp. 157-162 
504 |a Wang, W., Li, B.H., Stassen, E., Mortensen, N.A., Christensen, J., (2016) Nanoscale, 8, pp. 3809-3815 
504 |a Cuevas, M., (2017) J Quant Spectrosc Radiat Transfer, 200, pp. 190-197 
504 |a Arslanagic, S., Ziolkowski, R.W., (2010) J Opt, 12, p. 024014. , (9pp) 
504 |a Abramowitz, M., Stegun, I.A., Handbook of Mathematical Functions (1965), Dover New York; Novotny, L., Hecht, B., Principles of Nano–Optics (2006), Cambridge University Press New York; Martín-Moreno, L., de Abajo F. J., G., García-Vidal, F.J., (2015) Phys Rev Lett, 115, p. 173601 
504 |a Merano, M., (2016) Phys Rev A, 93, p. 013832 
504 |a Falkovsky, F.A., (2008) Phys Usp, 51. , 887–97 
504 |a Milkhailov, S.A., Siegler, K., (2007) Phys Rev Lett, 99, p. 016803 
504 |a Falkovsky, L.A., Pershoguba, S.S., (2007) Phys Rev B, 76, p. 153410 
504 |a Cuevas, M., Riso, M., Depine, R.A., (2016) J Quant Spectrosc Radiat Transfer, 173, pp. 26-33 
504 |a Chen, P.Y., Alu, A., (2011) ACS Nano, 5, pp. 5855-5863 
504 |a Naserpour, M., Zapata-Rodríguez, C.J., Vukovic, S.M., Pashaeiadl, H., Belic, M.R., (2017) Sci Rep, 7, p. 12186 
504 |a Mertens, H., Koenderink, A.F., Polman, A., (2007) Phys Rev B, 76, p. 115123 
504 |a Mason, D.R., Menabde, S.G., Park, N., (2014) Opt Express, 847, p. 201871 
504 |a Hanson, G.W., (2008) J App Phys, 103, p. 064302 
504 |a Merano, M., (2016) Opt Lett, 41, pp. 2668-2671 
504 |a Farmani, A., Miri, M., Sheikhi, M.H., (2017) IEEE Photonics Technol Lett, 30, pp. 153-156 
506 |2 openaire  |e Política editorial 
520 3 |a The present work focuses on theoretically research on the spontaneous emission and the energy transfer process between two single optical emitters placed close to a graphene coated wire. The localized surface plasmons (LSPs) supported by the structure provide decay channels which lead to an enhancement of the emission and radiation decay rates as well as an improvement in the energy transfer between two dipole emitters. Modifications resulting from varying the orientation of dipole moments in these quantities are shown. We find that the radiation and the energy transfer efficiencies can be largely reduced at a specific frequency depending on the emitter location. By dynamically tuning the chemical potential of graphene coating, the spectral region where the dipole–field interaction is enhanced can be chosen over a wide range. © 2018 Elsevier Ltd  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 1800 
536 |a Detalles de la financiación: The author acknowledge the financial supports of Fundación Universidad de Belgrano (UB) and Consejo Nacional de Investigaciones Científicas y Técnicas, ( CONICET , PIP 1800). 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires, Argentina 
593 |a Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires, Argentina 
690 1 0 |a DIPOLE–DIPOLE INTERACTION 
690 1 0 |a GRAPHENE 
690 1 0 |a SPONTANEOUS EMISSION 
690 1 0 |a SURFACE PLASMON 
690 1 0 |a DECAY (ORGANIC) 
690 1 0 |a ENERGY TRANSFER 
690 1 0 |a SPONTANEOUS EMISSION 
690 1 0 |a SURFACE PLASMONS 
690 1 0 |a DIPOLE INTERACTION 
690 1 0 |a ENERGY TRANSFER EFFICIENCY 
690 1 0 |a ENERGY TRANSFER PROCESS 
690 1 0 |a FIELD INTERACTIONS 
690 1 0 |a GRAPHENE COATINGS 
690 1 0 |a LOCALIZED SURFACE PLASMON 
690 1 0 |a SPECIFIC FREQUENCIES 
690 1 0 |a SUB-WAVELENGTH WIRES 
690 1 0 |a GRAPHENE 
690 1 0 |a RESEARCH 
690 1 0 |a SPECTRAL ANALYSIS 
690 1 0 |a THEORETICAL STUDY 
690 1 0 |a WAVELENGTH 
773 0 |d Elsevier Ltd, 2018  |g v. 214  |h pp. 8-17  |p J. Quant. Spectrosc. Radiat. Transf.  |x 00224073  |w (AR-BaUEN)CENRE-2190  |t Journal of Quantitative Spectroscopy and Radiative Transfer 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046102769&doi=10.1016%2fj.jqsrt.2018.04.020&partnerID=40&md5=d33e8187f763d5fa211143271f4502c8  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jqsrt.2018.04.020  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00224073_v214_n_p8_Cuevas  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224073_v214_n_p8_Cuevas  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_00224073_v214_n_p8_Cuevas  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion