Geometric significance of Toeplitz kernels

Let L2 be the Lebesgue space of square-integrable functions on the unit circle. We show that the injectivity problem for Toeplitz operators is linked to the existence of geodesics in the Grassmann manifold of L2. We also investigate this connection in the context of restricted Grassmann manifolds as...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Andruchow, E.
Otros Autores: Chiumiento, E., Larotonda, G.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08738caa a22008537a 4500
001 PAPER-16857
003 AR-BaUEN
005 20230518204754.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85042852654 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JFUAA 
100 1 |a Andruchow, E. 
245 1 0 |a Geometric significance of Toeplitz kernels 
260 |b Academic Press Inc.  |c 2018 
270 1 0 |m Larotonda, G.; Instituto Argentino de Matemática, ‘Alberto P. Calderón’, CONICET, Saavedra 15 3er. piso, Argentina; email: glaroton@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Andruchow, E., Operators which are the difference of two projections (2014) J. Math. Anal. Appl., 420 (2), pp. 1634-1653 
504 |a Andruchow, E., The Grassmann manifold of a Hilbert space (2014) Proceedings of the XIIth Dr. Antonio A.R. Monteiro Congress, pp. 41-55. , Univ. Nac. Sur Dep. Mat. Inst. Mat. Bahía Blanca 
504 |a Andruchow, E., Larotonda, G., Hopf–Rinow theorem in the Sato Grassmannian (2008) J. Funct. Anal., 255 (7), pp. 1692-1712 
504 |a Andruchow, E., Larotonda, G., Lagrangian Grassmannian in infinite dimension (2009) J. Geom. Phys., 59 (3), pp. 306-320 
504 |a Andruchow, E., Chiumiento, E., Di Iorio y Lucero, M.E., Essentially commuting projections (2015) J. Funct. Anal., 268 (2), pp. 336-362 
504 |a Antezana, J., Larotonda, G., Varela, A., Optimal paths for symmetric actions in the unitary group (2014) Comm. Math. Phys., 328 (2), pp. 481-497 
504 |a Beltiţă, D., Ratiu, T.S., Tumpach, A.B., The restricted Grassmannian, Banach Lie–Poisson spaces, and coadjoint orbits (2007) J. Funct. Anal., 247 (1), pp. 138-168 
504 |a Böttcher, A., Silbermann, B., Analysis of Toeplitz Operators (1990), Springer-Verlag Berlin; Böttcher, A., Karlovich, A., Silbermann, B., Generalized Krein algebras and asymptotics of Toeplitz determinants (2007) Methods Funct. Anal. Topology, 13 (3), pp. 236-261 
504 |a Bourgain, J., Kozma, G., One cannot hear the winding number (2007) J. Eur. Math. Soc. (JEMS), 9 (4), pp. 637-658 
504 |a Carey, A.L., Some homogeneous spaces and representations of the Hilbert Lie group U(H)2 (1985) Rev. Roumaine Math. Pures Appl., 30 (7), pp. 505-520 
504 |a Clark, D.N., On the point spectrum of a Toeplitz operator (1967) Trans. Amer. Math. Soc., 126, pp. 251-266 
504 |a Corach, G., Porta, H., Recht, L., The geometry of spaces of projections in C⁎-algebras (1993) Adv. Math., 101 (1), pp. 59-77 
504 |a Davis, C., Separation of two linear subspaces (1958) Acta Sci. Math. (Szeged), 19, pp. 172-187 
504 |a Dixmier, J., Position relative de deux veriétés linéaires fermées dans un espace de Hilbert (1948) Rev. Sci., 86, pp. 387-399. , (in French) 
504 |a Douglas, R.G., Banach Algebra Techniques in Operator Theory (1998) Graduate Texts in Mathematics, 179. , second edition Springer-Verlag New York 
504 |a Goliński, T., Odzijewicz, A., Hierarchy of Hamilton equations on Banach Lie–Poisson spaces related to restricted Grassmannian (2010) J. Funct. Anal., 258 (10), pp. 3266-3294 
504 |a Halmos, P.R., Two subspaces (1969) Trans. Amer. Math. Soc., 144, pp. 381-389 
504 |a Hartmann, A., Mitkovski, M., Kernels of Toeplitz Operators (2016) Contemp. Math., 679. , Amer. Math. Soc. Providence, RI 
504 |a Hruščhev, S.V., Nikol'skiı̌, N.K., Pavlov, B.S., Unconditional basis of exponentials and of reproducing kernels (1981) Lecture Notes in Math., 864, pp. 214-335 
504 |a Kovarik, Z.V., Manifolds of linear involutions (1979) Linear Algebra Appl., 24, pp. 271-287 
504 |a Lee, M., Sarason, D., The spectra of some Toeplitz operators (1971) J. Math. Anal. Appl., 33, pp. 529-543 
504 |a Makarov, N., Poltoratski, A., Meromorphic inner functions, Toeplitz kernels and the uncertainty principle (2005) Perspectives in Analysis, Math. Phys. Stud., 27, pp. 185-252. , Springer Berlin 
504 |a Makarov, N., Poltoratski, A., Beurling–Malliavin theory for Toeplitz kernels (2010) Invent. Math., 180, pp. 443-480 
504 |a Mitkovski, M., Poltoratski, A., Pólya sequences, Toeplitz kernels and gap theorems (2010) Adv. Math., 224, pp. 1057-1070 
504 |a Nikol'skiı̌, N.K., Treatise on the Shift Operator. Spectral Function Theory (1986) Grundlehren der Mathematischen Wissenschaften, 273. , Springer-Verlag Berlin 
504 |a Nikol'skiı̌, N.K., Operators, Functions And Systems: An Easy Reading. Vol. 1. Hardy, Hankel, and Toeplitz (2002) Mathematical Surveys and Monographs, 92. , American Mathematical Society Providence, RI Translated from the French by Andreas Hartmann 
504 |a Pavlović, M., Introduction to Function Spaces on the Disk (2004) Posebna Izdanja [Special Editions], 20. , Matematički Institut SANU Belgrade 
504 |a Porta, H., Recht, L., Minimality of geodesics in Grassmann manifolds (1987) Proc. Amer. Math. Soc., 100, pp. 464-466 
504 |a Pressley, A., Segal, G., Loop Groups (1986) Oxford Mathematical Monographs, , Oxford Science Publications. The Clarendon Press, Oxford University Press New York 
504 |a Sarason, D., Algebras of functions on the unit circle (1973) Bull. Amer. Math. Soc., 79 (2), pp. 286-299 
504 |a Segal, G., Wilson, G., Loop groups and equations of KdV type (1985) Publ. Math. Inst. Hautes Études Sci., 61, pp. 5-65 
504 |a Segal, G., Wilson, G., Loop groups and equations of KdV type (1998) Surveys in Differential Geometry: Integral Systems [Integrable Systems], Surv. Differ. Geom., IV, pp. 403-466. , Int. Press Boston, MA 
504 |a Seidel, W., On the distribution of values of bounded analytic functions (1934) Trans. Amer. Math. Soc., 36, pp. 201-226 
504 |a Tumpach, A.B., Hyperkhäler structures and infinite-dimensional Grassmannians (2007) J. Funct. Anal., 243 (1), pp. 158-206 
504 |a Zygmund, A., Trigonometric Series. Vol. I, II (2002) Cambridge Mathematical Library, , third edition Cambridge University Press Cambridge With a foreword by Robert A. Fefferman 
520 3 |a Let L2 be the Lebesgue space of square-integrable functions on the unit circle. We show that the injectivity problem for Toeplitz operators is linked to the existence of geodesics in the Grassmann manifold of L2. We also investigate this connection in the context of restricted Grassmann manifolds associated to p-Schatten ideals and essentially commuting projections. © 2018 Elsevier Inc.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, 2010 2478 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 2016 112201 
536 |a Detalles de la financiación: This research was supported by CONICET ( PIP 2016 112201 ) and ANPCyT ( 2010 2478 ). We would like to thank Daniel Suárez for his helpful insight on Toeplitz operators, and the anonymous referee for her/his valuable suggestions to improve this manuscript. 
593 |a Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J.M. Gutierrez 1150, Los Polvorines, 1613, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas, Universidad de La Plata, Calles 50 y 115, La Plata, 1900, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428) CABA, Argentina 
593 |a Instituto Argentino de Matemática, ‘Alberto P. Calderón’, CONICET, Saavedra 15 3er. piso, Buenos Aires, 1083, Argentina 
690 1 0 |a GEODESIC 
690 1 0 |a SATO GRASSMANNIAN 
690 1 0 |a SCHATTEN IDEAL 
690 1 0 |a TOEPLITZ OPERATOR 
700 1 |a Chiumiento, E. 
700 1 |a Larotonda, G. 
773 0 |d Academic Press Inc., 2018  |g v. 275  |h pp. 329-355  |k n. 2  |p J. Funct. Anal.  |x 00221236  |w (AR-BaUEN)CENRE-287  |t Journal of Functional Analysis 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042852654&doi=10.1016%2fj.jfa.2018.02.015&partnerID=40&md5=ba8454c2c3a93ee52120d6528f5b77e6  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jfa.2018.02.015  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00221236_v275_n2_p329_Andruchow  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221236_v275_n2_p329_Andruchow  |y Registro en la Biblioteca Digital 
961 |a paper_00221236_v275_n2_p329_Andruchow  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77810