Modeling the atmospheric circulation and climatic conditions over southern south america during the late history of the gondwana supercontinent

The different processes responsible for climate and atmospheric circulation forcing and their relevance on the general circulation of the Southern South America together with the conditions over Patagonia, for the period of the Gondwana supercontinent, are identified in this chapter. During the hist...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Compagnucci, R.H
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Netherlands 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15942caa a22011057a 4500
001 PAPER-16779
003 AR-BaUEN
005 20230518204748.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85031422416 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Compagnucci, R.H. 
245 1 0 |a Modeling the atmospheric circulation and climatic conditions over southern south america during the late history of the gondwana supercontinent 
260 |b Springer Netherlands  |c 2014 
270 1 0 |m Compagnucci, R.H.; DCAO/Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Guiraldes 2160, Argentina; email: rhc@at.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Arias, C., Palaeoceanography and biogeography in the Early Jurassic Panthalassa and Tethys Oceans (2008) Gondwana Res, 14, pp. 306-315 
504 |a Barron, E.J., A warm, equable Cretaceous: The nature of the problem (1983) Earth Sci Rev, 19, pp. 305-338 
504 |a Barron, E.J., Fawcett, P.J., The climate of Pangaea: A review of climate model simulations of the Permian (1995) The Permian of Northern Pangea, 1, pp. 37-52. , Scholle PA, Peryt TM, Ulmer- Scholle DS (eds), Springer, Berlin 
504 |a Berner, R.A., Kothavala, Z., GEOCARB III: A revised model of atmospheric CO2 over phanerozoic time (2001) Am J Sci, 301, pp. 182-204 
504 |a Bice, K.L., Birgel, D., Meyers, P.A., Dahl, K.A., Hinrichs, K., Norris, R.D., A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations (2006) Paleoceanography, 21, p. PA2002 
504 |a Bush, A.B.G., Numerical simulation of the Cretaceous Tethys circumglobal current (1997) Science, 275, pp. 807-810 
504 |a Bush, A.B.G., Philander, S.G.H., The late Cretaceous: Simulation with a coupled atmosphere-ocean GCM (1997) Paleoceanography, 21, pp. 475-516 
504 |a Cavallotto, J.L., Violante, R.A., Hernández-Molina, F.J., Geological aspects and evolution of the Patagonian continental margin (2011) Biol J Linn Soc, 103, pp. 346-362 
504 |a Chandler, M., Rind, D., Ruedy, R., Pangean climate during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate (1992) Bull Geol Soc Am, 104, pp. 543-559 
504 |a Crowley, T.J., North, G.R., (1999) Paleoclimatology, p. 360. , Oxford University Press, New York 
504 |a Crowley, T.J., Hyde, W.T., Short, D.A., Seasonal cycle variations on the supercontinent of Pangea (1989) Geology, 17, pp. 457-460 
504 |a Davies, A., (2006) High resolution palaeoceanography and palaeoclimatology from mid and high latitude Late Cretaceous laminated sediments, p. 274. , Unpublished doctoral dissertation, Faculty of Engineering Science and Mathematics, School of Ocean and Earth Science, University of Southampton, Southampton 
504 |a DeConto, R.M., Pollard, D., Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 (2003) Nature, 421, pp. 245-249 
504 |a Dubiel, R.F., Parrish, J.T., Parrish, J.M., Good, S.C., The Pangaean megamonsoon-evidence from the Upper Triassic Chinle Formation, Colorado Plateau (1991) Palaios, 6, pp. 347-370 
504 |a Fawcett, P.J., Barron, E.J., Robison, V.D., Katz, B.J., The climatic evolution of India and Australia from the Late Permian toMid-Jurassic: A comparison of climate model results with the geologic record (1994) Geol Soc Am Spec Pap, 288, pp. 139-158 
504 |a Floegel, S., (2001) On the influence of precessional Milankovitch cycles on the Late Cretaceous climate system: Comparison of GCM-results, geochemical, and sedimentary proxies for the Western Interior Seaway of North America, , Universitätsbibliothek der Christian-Albrechts-Universität Kiel, Kiel 
504 |a Frakes, L.A., Estimating the global thermal state from Cretaceous sea surface and continental temperature data (1999) Spec Pap-Geol Soc Am, pp. 49-58 
504 |a Gradstein, F., Ogg, J., Smith, A., Bleeker, W., A new Geologic Time Scale, with special reference to Precambrian and Neogene (2004) Episodes, 27, pp. 83-100 
504 |a Haq, B.U., Hardenbol, J., Vail, P.R., Chronology of fluctuating sea levels since the Triassic (250 million years ago to present) (1987) Science, 235, pp. 1156-1167 
504 |a Hay, W.W., Evolving ideas about the Cretaceous climate and ocean circulation (2008) Cretac Res, 29 (5-6), pp. 725-753 
504 |a Hay, W.W., Flögel, S., Söding, E., Is the initiation of glaciation of the Cretaceous Ocean-Climate System on Antarctica related to a change in the structure of the ocean? (2005) Glob Planet Change (Geol Soc Am Spec), 45, pp. 23-33 
504 |a Haywood, A.M., Valdes, P.J., Markwick, P.J., Cretaceous (Wealden) climates: A modeling perspective (2004) Cretac Res, 25, pp. 303-311 
504 |a Hotinski, R.M., Toggweiller, J.R., Impact of a Tethyan circumglobal passage on ocean heat transport and “equable” climates (2003) Paleoceanography, 18 (1), p. 1007 
504 |a Huber, B.T., MacLeod, K.G., Wing, S.L., (2000) Warm climates in earth history, p. 462. , Cambridge University Press, Cambridge 
504 |a Iglesias Llanos, M.P., Riccardi, A.C., Singer, S.E., Palaeomagnetic study of Lower Jurassic marine strata from the Neuquén Basin, Argentina: A new Jurassic apparent polar wander path for South America (2006) Earth Planet Sci Lett, 252, pp. 379-397 
504 |a Kump, L.R., Pollard, D., Amplification of Cretaceous warmth by biological cloud feedbacks (2008) Science, 320, p. 195 
504 |a Kutzbach, J.E., Gallimore, R.G., Pangaean climates: Megamonsoons of the megacontinent (1989) J Geophys Res, 94 (D3), pp. 3341-3357 
504 |a Kutzbach, J.E., Guetter, P.J., Washington, W.M., Simulated circulation of an idealized ocean for Pangaean time (1990) Paleoceanography, 5 (3), pp. 299-317 
504 |a Markwick, P.J., Valdes, P.J., (2002) A quantitative evaluation and application of the results of a Maastrichtian (Late Cretaceous) coupled ocean-atmosphere experiment using the HadCM3 AOGCM, , Cretaceous Climate and Oceans Dynamics Workshop, 14-17 July 2002, The Nature Place, Florissant, CO, USA 
504 |a Moore, G.T., Hayashida, D.N., Ross, C.A., Jacobson, S.R., Palaeoclimate of the Kimmeridgian/Tithonian (Late Jurassic) world. I. Results using a general circulation model (1992) Palaeogeogr Palaeoclimatol Palaeoecol, 93, pp. 113-150 
504 |a Moore, G.T., Sloan, L.C., Hayashida, D.N., Umrigar, N.P., Paleoclimate of the Kimmeridge/Tithonian (Late Jurassic) world. II. Sensitivity tests comparing three different paleotopographic settings (1992) Palaeogeogr Palaeoclimatol Palaeoecol, 95, pp. 229-252 
504 |a Otto-Bliesner, B.L., Brady, E.C., Shields, C., Late Cretaceous ocean: Coupled simulations with the National Center for Atmospheric Research Climate System Model (2002) J Geophys Res, p. 107 
504 |a Poulsen, C.J., Paleoclimate modeling, pre-quaternary (2008) Encyclopedia of paleoclimatology and ancient environments, pp. 700-709. , Gornitz V (ed), Kluwer Academic, Dordrecht 
504 |a Poulsen, C.J., Gendaszek, A.S., Jacob, R., Did the rifting of the Atlantic Ocean cause the Cretaceous thermal maximum? (2003) Geology, 31, pp. 115-118 
504 |a Poulsen, C.J., Pollard, D., White, T.S., General circulation model simulation of the •18O content of continental precipitation in the middle Cretaceous: A model-proxy comparison (2007) Geology, 35, pp. 199-202 
504 |a Rais, P., Louis-Schmid, B., Bernasconi, S.M., Weissert, H., Palaeoceanographic and palaeoclimatic reorganization around the Middle-Late Jurassic transition (2007) Palaeogeogr Palaeoclimatol Palaeoecol, 251, pp. 527-546 
504 |a Rees, P.M., Zeigler, A.M., Valdes, P.J., Jurassic phytogeography and climates: New data and model comparisons (2000) Warm climates in earth history, pp. 297-318. , Huber BT, MacLeod KG, Wing ST (eds), Cambridge University Press, Cambridge 
504 |a Ross, C.A., Ross, J.R.P., Late Paleozoic sea levels and depositional sequences (1987) Timing and depositional history of eustatic sequences: Constraints on seismic stratigraphy, pp. 137-149. , Ross CA, Haman D (eds), Special Publication 24. Cushman Foundation for Foraminiferal Research, Washington, DC 
504 |a Ross, C.A., Ross, J.R.P., Late Paleozoic transgressive regressive deposition (1988) Sea level change: An integrated approach, 42, pp. 227-247. , Wilgus CK, Hastings BS, Kendall CGSC, Posamentier HW, Ross CA, Van Wagoner JC (eds), Special Publication, Society of Economic Paleontologists and Mineralogists, Tulsa 
504 |a Royer, D.L., CO2-forced climate thresholds during the Phanerozoic (2006) Geochim Cosmochim Acta, 70, pp. 5665-5675 
504 |a Scher, H.D., Martin, E.E., Timing and climatic consequences of the opening of Drake Passage (2006) Science, 312, pp. 428-430 
504 |a Scherer, C.M.S., Goldberg, K., Palaeowind patterns during the latest Jurassic-earliest Cretaceous in Gondwana: Evidence from aeolian cross-strata of the Botucatu Formation, Brazil (2007) Palaeogeogr Palaeoclimatol Palaeoecol, 250 (1-4), pp. 89-100 
504 |a Scotese, C.R., (2001) Atlas of earth history, , PALEOMAP Project, Arlington 
504 |a Scotese, C.R., (2012) PALEOMAP, Earth history and climate history, , http://www.scotese.com/, WWWdocument, Accessed Mar 2012 
504 |a Scotese, C.R., Summerhayes, C.P., A computer model of paleoclimate to predict upwelling in the Mesozoic and Cenozoic (1986) Geobyte, 1, pp. 28-42 
504 |a Sellwood, B.W., Valdes, P.J., Mesozoic climates: General circulationmodels and the rock record (2006) Sediment Geol, 190, pp. 269-287 
504 |a Sellwood, B.W., Valdes, P.J., Price, G.D., Geological evaluation of GCM simulations of Late Jurassic palaeoclimate (2000) Palaeogeogr Palaeoclimatol Palaeoecol, 156, pp. 147-160 
504 |a Sewall, J.O., van deWal, R.S.W., van der Zwan, K., van Ooosterhout, C., Dijkstra, H.A., Scotese, C.R., Climate model boundary conditions for four Cretaceous time slices (2007) Clim Past, 3, pp. 647-657 
504 |a Sijp, W.P., England, M.H., Effect of the Drake Passage throughflow on global climate (2004) J Phys Oceanogr, 34, pp. 1254-1266 
504 |a Trenberth, K.E., (1992) Climate system modeling, p. 788. , Cambridge University Press, New York 
504 |a Divisions of geologic time-major chronostratigraphic and geochronologic units: U.S (2010) Geological Survey Fact Sheet 2010-3059, p. 2 
504 |a Valdes, P.J., Atmospheric general circulation models of the Jurassic (1993) Philos Trans R Soc B, 341 (1297), pp. 317-326 
504 |a Valdes, P.J., Warm climate forcing mechanisms (2000) Warm climates in earth history, pp. 3-20. , Huber BT, MacLeod KG, Wing SL (eds), Cambridge University Press, Cambridge 
504 |a Valdes, P.J., Sellwood, B.W., A palaeoclimate model for the Kimmeridgian (1992) Palaeogeogr Palaeoclimatol Palaeoecol, 95, pp. 47-72 
504 |a Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Strauss, H., 87Sr/86Sr, •13C and •18O evolution of Phanerozoic seawater (1999) Chem Geol, 161, pp. 59-88 
504 |a Volkheimer, W., Rauhut, O.W.M., Quattrocchio, M.E., Martínez, M.A., Jurassic Paleoclimates in Argentina, a review (2008) Rev Asoc Geol Argent, 63 (4), pp. 549-556 
504 |a Walter, H., (1985) Vegetation of the earth, p. 318. , Springer, Berlin 
504 |a Ward, P.L., Sulfur dioxide initiates global climate change in four ways (2009) Thin Solid Films, 517, pp. 3188-3203 
504 |a Winguth, A.M.E., Heinze, C., Kutzbach, J.E., Maier-Reimer, E., Mikolajewicz, U., Rowley, D., Rees, A., Ziegler, A.M., Simulated ocean circulation of the Middle Permian (2002) Paleoceanography, 17 (5), p. 1057 
504 |a Winterer, E.L., The Tethyan Pacific during Late Jurassic and Cretaceous times (1991) Palaeogeogr Palaeoclimatol Palaeoecol, 87, pp. 253-265 
504 |a Zhou, J., Poulsen, C.J., Pollard, D., White, T.S., Simulation of modern and middle Cretaceous marine •18O with an ocean-atmosphere general circulation model (2008) Paleoceanography, 23, p. PA3223 
504 |a Ziegler, P.A., (1988) Evolution of the Arctic-North-Atlantic and the western Tethys, , American Association of Petroleum Geologists, Tulsa 
504 |a Ziegler, A.M., Scotese, C.R., Barrett, S.F., (1982) Tidal friction and earth’s rotation II, , Brosche F, Sundermann J (eds), Springer, Berlin 
504 |a Ziegler, A.M., Gibbs, M.T., Hulver, M.L., A mini-atlas of oceanic water masses in the Permian period (1998) Proc R Soc Aust, 110 (1-2), pp. 323-343 
520 3 |a The different processes responsible for climate and atmospheric circulation forcing and their relevance on the general circulation of the Southern South America together with the conditions over Patagonia, for the period of the Gondwana supercontinent, are identified in this chapter. During the history of this supercontinent, the main paleoclimate forcings were as follows: (1) the continental drift that affected latitude, elevation, and topography; (2) changes in the amount of greenhouse gases in the Earth’s atmosphere; and (3) volcanic activity. The paleoatmospheric circulation is analyzed in special sections according to age, Early Triassic to Early Jurassic, Middle to Late Jurassic, and Cretaceous, accordingly with the key changes in the ocean-land distribution and locations of the continents. Different paleoclimatic modeling scenarios through the periods are reviewed and compared with proxy data. From both sources of information, it arises that the opening of the Hispanic Corridor and the formation of the Atlantic Ocean were the chief factors that produced the strong climatic changes registered from the Triassic to the Cretaceous and the remarkable difference with current climate conditions. Other important factors were the variations in the volume of greenhouse gases, especially CO2, which is related to volcanic activity and changes in the heat transport through the oceans. The observed results suggest that strong monsoon conditions dominated this period of the Gondwana supercontinent. However, there are large differences with respect to the impact of the various climatic forcings between model simulations of circulation general conditions in the Cretaceous. An extensive list of references provides detailed and updated information on the topics covered in this chapter. © Springer Science+Business Media Dordrecht 2014.  |l eng 
593 |a DCAO/Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Guiraldes 2160, Buenos Aires, C1428EGA, Argentina 
690 1 0 |a FORCING OF CLIMATIC CHANGE 
690 1 0 |a GONDWANA 
690 1 0 |a GREENHOUSE GASES 
690 1 0 |a PALAEOATMOSPHERIC CIRCULATION 
690 1 0 |a PALEOCLIMATE MODELING 
773 0 |d Springer Netherlands, 2014  |h pp. 113-134  |p Gondwana Landscapes in South. S. Am.: Argentina, Uruguay and South. Brazil  |z 9789400777026  |z 9789400777019  |w (AR-BaUEN)BIBLO-47964  |t Gondwana Landscapes in Southern South America: Argentina, Uruguay and Southern Brazil 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031422416&doi=10.1007%2f978-94-007-7702-6_6&partnerID=40&md5=a7cf0b4cd3c363ca1f08b6bee8ca14e6  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/978-94-007-7702-6_6  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_97894007_v_n_p113_Compagnucci  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97894007_v_n_p113_Compagnucci  |y Registro en la Biblioteca Digital 
961 |a paper_97894007_v_n_p113_Compagnucci  |b paper  |c PE 
962 |a info:eu-repo/semantics/bookPart  |a info:ar-repo/semantics/parte de libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 77732