Effect of crab bioturbation on organic matter processing in South West Atlantic intertidal sediments

Organic matter (OM) remineralization plays a key role in controlling the biogeochemistry of marine sediments. Through their burrowing activities, bioturbating macrofauna not only induces physical, chemical and biological modifications, which can affect microbial communities responsible for organic m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fanjul, E.
Otros Autores: Escapa, M., Montemayor, D., Addino, M., Alvarez, M.F, Grela, M.A, Iribarne, O.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 24203caa a22017057a 4500
001 PAPER-16772
003 AR-BaUEN
005 20230518204748.0
008 180614s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85028150185 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JSREF 
100 1 |a Fanjul, E. 
245 1 0 |a Effect of crab bioturbation on organic matter processing in South West Atlantic intertidal sediments 
260 |b Elsevier B.V.  |c 2015 
270 1 0 |m Fanjul, E.; Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras, (IIMyC; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad Nacional de Mar del Plata), CC 573 Correo Central, Argentina; email: mefanjul@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Aller, R., Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation (1994) Chem. Geol., 114, pp. 331-345 
504 |a Aller, J.Y., Aller, R.C., Evidence for localized enhancement of biological activity associated with tube and burrow structures in deep sea sediments at the HEBBLE site Western North Atlantic (1986) Deep-Sea Res., 33, pp. 755-790 
504 |a Alvarez, M.F., Esquius, K.S., Addino, M., Alberti, J., Iribarne, O., Botto, F., Cascading top-down effects on estuarine intertidal meiofaunal and algal assemblages (2013) J. Exp. Mar. Biol. Ecol., 440, pp. 216-224 
504 |a Andersen, F.Ø.F., Kristensen, E., Oxygen microgradients in the rhizosphere of the mangrove Avicennia marina (1988) Mar. Ecol. Prog. Ser., 44, pp. 201-204 
504 |a Andersen, F.Ø., Kristensen, E., Blackburn, T.H., The importance of benthic macrofauna in decomposition microalgae in a coastal marine sediment (1992) Limnol. Oceanogr., 37, pp. 1392-1404 
504 |a Asmus, R.M., Jensen, M.H., Jensen, K.M., Kristensen, E., Asmus, H., Wille, A., The role of water movement and spatial scaling for measurement of dissolved inorganic nitrogen fluxes in intertidal sediments (1998) Estuar. Coast. Shelf Sci., 46, pp. 221-232 
504 |a Berner, R.A., (1980) Early Diagenesis: A Theoretical Approach, , Princeton University Press 
504 |a Bertness, M.D., Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh (1985) Ecology 
504 |a Bortolus, A., Iribarne, O., Effects of the SW Atlantic burrowing crab Chasmagnathus granulata on a Spartina salt marsh (1999) Mar. Ecol. Prog. Ser., 178, pp. 79-88 
504 |a Botto, F., Iribarne, O., Contrasting effects of two burrowing crabs (Chasmagnathus granulata and Uca uruguayensis) on sediment composition and transport in estuarine environments (2000) Estuar. Coast. Shelf Sci., 51, pp. 141-151 
504 |a Botto, F., Valiela, I., Iribarne, O., Martinetto, P., Alberti, J., Impact of burrowing crabs on C and N sources, control, and transformations in sediments and food webs of SW Atlantic estuaries (2005) Mar. Ecol. Prog. Ser., 295, pp. 155-164 
504 |a Botto, F., Iribarne, O., Gutiérrez, J., Bava, J., Gagliardini, A., Valiela, I., Ecological importance of passive deposition of organic matter into burrows of the SW Atlantic crab Chasmagnathus granulatus (2006) Mar. Ecol. Prog. Ser., 312 (201), p. 210 
504 |a Branch, G.M., Pringle, A., The impact of the sand prawn Callianassa kraussi Stebbing on sediment turnover and on bacteria, meiofauna, and benthic microflora (1987) J. Exp. Mar. Biol. Ecol., 107, pp. 219-235 
504 |a Burdige, D.J., (2006) Geochemistry of Marine Sediments, , Princeton University Press 
504 |a Burdige, D., Homstead, J., Fluxes of dissolved organic carbon from Chesapeake Bay sediments (1994) Geochim. Cosmochim. Acta, 58, pp. 3407-3424 
504 |a Canfield, D.E., Organic matter oxidation in marine sediments (1993) Interactions of C, N, P and S Biogeochemical Cycles and Global Change, pp. 333-363. , Springer Berlin Heidelberg, Berlin, R. Wollast, F.T. Mackenzie, L. Chou (Eds.) 
504 |a Canfield, D.E., Kristensen, E., Thamdrup, B., (2005) Aquatic Geomicrobiology, , Elsevier 
504 |a Cebrian, J., Lartigue, J., Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems (2004) Ecol. Monogr. 
504 |a Charpy-Roubaud, C., Sournia, A., The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans (1990) Mar. Microb. Food Webs, 4, pp. 31-57 
504 |a Chin, Y., Traina, S., Swank, C., Backhus, D., Abundance and properties of dissolved organic matter in pore waters of a freshwater wetland (1998) Limnol. Oceanogr., 43, pp. 1287-1296 
504 |a Daleo, P., Fanjul, E., Mendez Casariego, A., Silliman, B.R., Bertness, M.D., Iribarne, O., Ecosystem engineers activate mycorrhizal mutualism in salt marshes (2007) Ecol. Lett., 10, pp. 902-908 
504 |a Daleo, P., Alberti, J., Canepuccia, A., Escapa, M., Fanjul, E., Silliman, B.R., Bertness, M.D., Iribarne, O., Mycorrhizal fungi determine salt-marsh plant zonation depending on nutrient supply (2008) J. Ecol., 96, pp. 431-437 
504 |a Danovaro, R., Detritus-bacteria-meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean (1996) Mar. Biol., 127, pp. 1-13 
504 |a Danovaro, R., Fabiano, M., Della Croce, N., Labile organic matter and microbial biomasses in deep-sea sediments (Eastern Mediterranean Sea) (1993) Deep-Sea Res. I Oceanogr. Res. Pap., 40, pp. 953-965 
504 |a Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., Colorimetric method for determination of sugars and related substances (1956) Anal. Chem., 28, pp. 350-356 
504 |a Escapa, M., Iribarne, O., Navarro, D., Effects of the intertidal burrowing crab Chasmagnathus granulatus on infaunal zonation patterns, tidal behavior, and risk of mortality (2004) Estuaries, 27, pp. 120-131 
504 |a Escapa, M., Perillo, G.M.E., Iribarne, O., Sediment dynamics modulated by burrowing crab activities in contrasting SW Atlantic intertidal habitats (2008) Estuar. Coast. Shelf Sci., 80, pp. 365-373 
504 |a Fabiano, M., Danovaro, R., Composition of organic matter in sediments facing a river estuary (Tyrrhenian Sea): relationships with bacteria and microphytobenthic biomass (1994) Hydrobiologia, 277, pp. 71-84 
504 |a Fabiano, M., Danovaro, R., Fraschetti, S., A three-year time series of elemental and biochemical composition of organic matter in subtidal sandy sediments of the Ligurian Sea (northwestern Mediterranean) (1995) Cont. Shelf Res., 15, pp. 1453-1469 
504 |a Fanjul, E., Grela, M.A., Iribarne, O., Effects of the dominant SW Atlantic intertidal burrowing crab Chasmagnathus granulatus on sediment chemistry and nutrient distribution (2007) Mar. Ecol. Prog. Ser., 341, pp. 177-190 
504 |a Fanjul, E., Grela, M.A., Canepuccia, A., Iribarne, O., The Southwest Atlantic intertidal burrowing crab Neohelice granulata modifies nutrient loads of phreatic waters entering coastal area (2008) Estuar. Coast. Shelf Sci., 79, pp. 300-306 
504 |a Fanjul, E., Bazterrica, M.C., Escapa, M., Grela, M.A., Iribarne, O., Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats (2011) Estuar. Coast. Shelf Sci., 92, pp. 629-638 
504 |a Fenchel, T., King, G.M., Blackburn, H., (1998) Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling, , Academic Press, San Diego 
504 |a Fichez, R., Composition and fate of organic-matter in submarine cave sediments-implications for the biogeochemical cycle of organic-carbon (1991) Oceanol. Acta, 14, pp. 369-377 
504 |a Furukawa, Y., Biogeochemical consequences of infaunal activities (2005) Interactions between Macro- and Microorganisms in Marine Sediments, pp. 159-177. , American Geophysical Union, Washington, D.C. E. Kristensen, R.R. Haese, J. Kostka (Eds.) 
504 |a Gribsholt, B., Kostka, J., Kristensen, E., Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh (2003) Mar. Ecol. Prog. Ser., 259, pp. 237-251 
504 |a Gutiérrez, J.L., Jones, C.G., Groffman, P.M., Findlay, S.E.G., Iribarne, O.O., Ribeiro, P.D., Bruschetti, C.M., The contribution of crab burrow excavation to carbon availability in surficial salt-marsh sediments (2006) Ecosystems, 9, pp. 647-658 
504 |a Hines, M.E., Knollmeyer, S.L., Tugei, J.B., Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh (1989) Limnol. Oceanogr., 34, pp. 578-590 
504 |a Holmer, M., Gribsholt, B., Kristensen, E., Effects of sea level rise on growth of Spartina anglica and oxygen dynamics in rhizosphere and salt marsh sediments (2002) Mar. Ecol. Prog. Ser., 225 (197), p. 204 
504 |a Iribarne, O., Bortolus, A., Botto, F., Between-habitat differences in burrow characteristics and trophics modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata (1997) Mar. Ecol. Prog. Ser., 155, pp. 137-145 
504 |a Iribarne, O., Bruschetti, M., Escapa, M., Bava, J., Botto, F., Gutiérrez, J., Palomo, G., Gagliardini, A., Small- and large-scale effect of the SW Atlantic burrowing crab on habitat use by migratory shorebirds (2005) J. Exp. Mar. Biol. Ecol., 315, pp. 87-101 
504 |a Isacch, J.P., Costa, C.S.B., Rodriguez-Gallego, L., Conde, D., Escapa, M., Gagliardini, D.A., Iribarne, O.O., Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast (2006) J. Biogeogr., 33, pp. 888-900 
504 |a Komada, T., Reimers, C.E., Luther, G.W., Burdige, D.J., Factors affecting dissolved organic matter dynamics in mixed-redox to anoxic coastal sediments (2004) Geochim. Cosmochim. Acta, 68, pp. 4099-4111 
504 |a Kostka, J.E., Gribsholt, B., Petrie, E., Dalton, D., Skelton, H., Kristensen, E., The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments (2002) Limnol. Oceanogr., 47, pp. 230-240 
504 |a Kristensen, E., Oxygen and inorganic nitrogen exchange in a "Nereis virens" (polychaeta) bioturbated sediment-water system (1985) J. Coast. Res., 1, pp. 109-116 
504 |a Kristensen, E., Benthic fauna and biogeochemical processes in marine sediments: microbial activities and fluxesflux (1988) Nitrogen Cycling in Coastal Marine Environments, pp. 275-299. , John Wiley & Sons Ltd., Chichester, T.H. Blackburn, J. Sørensen (Eds.) 
504 |a Kristensen, E., Mangrove crabs as ecosystem engineers; with emphasis on sediment processes (2008) J. Sea Res., 59, pp. 30-43 
504 |a Kristensen, E., Holmer, M., Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO3 -, and SO4 2-), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation (2001) Geochim. Cosmochim. Acta, 65, pp. 419-433 
504 |a Kristensen, E., Kostka, J.E., Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions (2005) Interactions between Macro- and Microorganisms in Marine Sediments, pp. 125-157. , American Geophysical Union, Washington, D.C. E. Kristensen, R.R. Haese, J.E. Kostka (Eds.) 
504 |a Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C., Banta, G., What is bioturbation? The need for a precise definition for fauna in aquatic sciences (2012) Mar. Ecol. Prog. Ser., 446, pp. 285-302 
504 |a Luppi, T., Bas, C., Méndez Casariego, A., Albano, M., Lancia, J., Kittlein, M., Rosenthal, A., Iribarne, O., The influence of habitat, season and tidal regime in the activity of the intertidal crab Neohelice (=Chasmagnathus) granulata (2013) Helgol. Mar. Res., 67, pp. 1-15 
504 |a Mann, K., Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems (1988) Limnol. Oceanogr., 33, pp. 910-930 
504 |a Martinetto, P., Iribarne, O., Palomo, G., Effect of fish predation on intertidal benthic fauna is modified by crab bioturbation (2005) J. Exp. Mar. Biol. Ecol., 318, pp. 71-84 
504 |a Mayer, L., Schick, L., Setchell, F., Measurement of protein in nearshore marine sediments (1986) Mar. Ecol. Prog. Ser., 30, pp. 159-165 
504 |a Menzel, D.W., Vaccaro, R.F., The measurement of dissolved organic and particulate carbon in seawater (1964) Limnol. Oceanogr., 9, pp. 138-142 
504 |a Michaud, E., Desrosiers, G., Mermillodblondin, F., Sundby, B., Stora, G., The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface (2006) J. Exp. Mar. Biol. Ecol., 337, pp. 178-189 
504 |a Montague, C., Influence of fiddler crab burrows and burrowing on metabolic processes in salt marsh sediments (1982) Estuarine Comparisons, pp. 283-301. , Academic Press, New York, V.S. Kennedy (Ed.) 
504 |a Montemayor, D.I., Addino, M., Fanjul, E., Escapa, M., Alvarez, M.F., Botto, F., Iribarne, O.O., Effect of dominant Spartina species on salt marsh detritus production in SW Atlantic estuaries (2011) J. Sea Res., 66, pp. 104-110 
504 |a Needham, H., Pilditch, C., Lohrer, A., Thrush, S., Habitat dependence in the functional traits of Austrohelice crassa, a key bioturbating species (2010) Mar. Ecol. Prog. Ser., 414, pp. 179-193 
504 |a Needham, H.R., Pilditch, C.A., Lohrer, A.M., Thrush, S.F., Context-specific bioturbation mediates changes to ecosystem functioning (2011) Ecosystems, 14, pp. 1096-1109 
504 |a Nielsen, O.I., Kristensen, E., Macintosh, D.J., Impact of fiddler crabs (Uca spp.) on rates and pathways of benthic mineralization in deposited mangrove shrimp pond waste (2003) J. Exp. Mar. Biol. Ecol., 289, pp. 59-81 
504 |a Nixon, S.W., Between coastal marshes and coastal waters: a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry (1980) Estuarine and Wetland Processes with Emphasis on Modeling, pp. 437-526. , Plenum Press, New York, P. Hamilton, K.B. McDonald (Eds.) 
504 |a Papaspyrou, S., Gregersen, T., Cox, R., Thessalou-Legaki, M., Kristensen, E., Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea) (2005) Aquat. Microb. Ecol., 38, pp. 181-190 
504 |a Papaspyrou, S., Gregersen, T., Kristensen, E., Christensen, B., Cox, R.P., Microbial reaction rates and bacterial communities in sediment surrounding burrows of two nereidid polychaetes (Nereis diversicolor and N. virens) (2006) Mar. Biol., 148, pp. 541-550 
504 |a Papaspyrou, S., Kristensen, E., Christensen, B., Arenicola marina (Polychaeta) and organic matter mineralisation in sandy marine sediments: in situ and microcosm comparison (2007) Estuar. Coast. Shelf Sci., 72, pp. 213-222 
504 |a Papaspyrou, S., Thessalou-Legaki, M., Kristensen, E., The influence of infaunal (Nereis diversicolor) abundance on degradation of organic matter in sandy sediments (2010) J. Exp. Mar. Biol. Ecol., 393, pp. 148-157 
504 |a Pedersen, M.F., Nielsen, S.L., Banta, G.T., Interaction between vegetation and nutrient dynamics in coastal marine ecosystems: an introduction (2004) Estuarine Nutrient Cycling: The Influence of Primary Producers: The Fate of Nutrients and Biomass (Aquatic Ecology Series), pp. 1-15. , Springer, Drodrechet, S.L. Nielsen, G.T. Banta, M.F. Pedersen (Eds.) 
504 |a Pusceddu, A., Sarà, G., Armeni, M., Fabiano, M., Mazzola, A., Seasonal and spatial changes in the sediment organic matter of a semi-enclosed marine system (W-Mediterranean Sea) (1999) Hydrobiologia, 397, pp. 59-70 
504 |a Pusceddu, A., Dell'Anno, A., Danovaro, R., Hydrolyzable protein and carbohydrate sedimentary pools as indicators of the trophic state of detritus sink systems: a case study in a Mediterranean coastal lagoon (2003) Estuaries, 26, pp. 641-650 
504 |a Robertson, G.P., Wedin, D., Groffman, P.M., Blair, J.M., Holland, E.A., Nadelhoffer, K.J., Harris, D., Soil carbon and nitrogen availability: nitrogen mineralization, nitrification and carbon turnover (1999) Standard Soil Methods for Long Term Ecological Research, pp. 258-271. , Oxford University Press, New York, G.P. Robertson, C.S. Bledsoe, D.C. Coleman, P. Sollins (Eds.) 
504 |a Rontani, J., Volkman, J., Lipid characterization of coastal hypersaline cyanobacterial mats from the Camargue (France) (2005) Org. Geochem., 36, pp. 251-272 
504 |a Schlesinger, W.H., (1997) Biogeochemistry: An Analysis of Global Change, , Academic Press, California 
504 |a Smith, D.J., Underwood, G.J.C., The production of extracellular carbohydrates by estuarine benthic diatoms: the effects of growth phase and light and dark treatment (2000) J. Phycol., 36, pp. 321-333 
504 |a Solan, M., Wigham, B.D., Biogenic particle reworking and bacterial-invertebrate interactions in marine sediments (2005) Interactions between Macro- and Microorganisms in Marine Sediments, pp. 105-124. , American Geophysical Union, Washington, D.C. E. Kristensen, R.R. Haese, J.E. Kostka (Eds.) 
504 |a Spivak, E., Anger, K., Luppi, T., Bas, C., Ismael, D., Distribution and habitat preferences of two grapsid crab species in Mar Chiquita Lagoon (Province of Buenos Aires, Argentina) (1994) Helgolander Meeresun., 78, pp. 59-78 
504 |a Spohn, M., Babka, B., Giani, L., Changes in soil organic matter quality during sea-influenced marsh soil development at the North Sea coast (2013) Catena, 107, pp. 110-117 
504 |a Sundby, B., Vale, C., Caetano, M., Luther, G.W., Redox chemistry in the root zone of a salt marsh sediment in the Tagus Estuary, Portugal (2003) Aquat. Geochem. 
504 |a Thomas, C., Blum, L., Importance of the fiddler crab Uca pugnax to salt marsh soil organic matter accumulation (2010) Mar. Ecol. Prog. Ser., 414, pp. 167-177 
504 |a Underwood, A.J., (1997) Experiments in Ecology: Their Logical Design and Interpretation using Analysis of Variance, , Cambridge University Press, Cambridge 
504 |a Underwood, G.J.C.G., Paterson, D.M., Parkes, R.J.R., The measurement of microbial carbohydrate exopolymers from intertidal sediments (1995) Limnol. Oceanogr., 40, pp. 1243-1253 
504 |a Wang, J.Q., Zhang, X.D., Jiang, L.F., Bertness, M.D., Fang, C.M., Chen, J.K., Hara, T., Li, B., Bioturbation of burrowing crabs promotes sediment turnover and carbon and nitrogen movements in an estuarine salt marsh (2010) Ecosystems, 13, pp. 586-599 
504 |a Woulds, C., Cowie, G.L., Levin, L.A., Andersson, J.H., Middelburg, J.J., Vandewiele, S., Lamont, P.A., Schwartz, M., Oxygen as a control on seafloor biological communities and their roles in sedimentary carbon cycling (2007) Limnol. Oceanogr., 52, pp. 1698-1709 
504 |a Yingst, J.Y., The utilisation of organic matter in shallow marine sediments by an epibenthic deposit feeding Holothurian (1976) J. Exp. Mar. Biol. Ecol., 23, pp. 55-69 
504 |a Zar, J.H., (1999) Biostatistical Analysis, , Prentice-Hall/Pearson, Englewood Cliff 
520 3 |a Organic matter (OM) remineralization plays a key role in controlling the biogeochemistry of marine sediments. Through their burrowing activities, bioturbating macrofauna not only induces physical, chemical and biological modifications, which can affect microbial communities responsible for organic matter remineralization, but it could also directly affect the distribution and bioavailability of sedimentary organic matter. Through in situ experiments manipulating crab and burrow density in intertidal soft-bottoms, we assessed if crab-bioturbation affects benthic metabolism, and the amount, distribution, and bioavailability of sedimentary OM. Crab-bioturbation enhanced overall benthic metabolism and benthic flux of dissolved OM toward the water column at both mudflat and saltmarsh zones. Moreover, our results revealed that bioturbation also changes the quality, bioavailability and distribution of sedimentary OM in mudflats and saltmarshes. Overall, bioturbation enhanced the proportion of labile organic carbon of bioturbated sediments and homogenized the sediment column in terms of their proportion of labile organic carbon. However, crabs also generated biogenic structures (e.g., mounds) that could promote spatial heterogeneity of high nutritional-value OM. Bioturbation-induced changes on benthic metabolism and on OM availability would result in a reduction of the storage capacity of carbon in our intertidal systems. Previous works indicated that crab-burrows trap detritus and OM-rich sediments. Our results suggest that detritus are efficiently remineralized at bioturbated sediment, and finally they are quickly exported to the water column as CO2 and DOC. Thus, crabs are modifying the OM processing at intertidal soft bottoms, and the ways in which carbon is exported to coastal waters. © 2014 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: UNMdP, Universidad Nacional de Mar del Plata 
536 |a Detalles de la financiación: Fundación Antorchas 
536 |a Detalles de la financiación: ANPCyT, Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We thank G. I. Álvarez for her help on sampling processing. We also deeply thank the Editor and two anonymous reviewers for their suggestions and comments, which greatly improved the manuscript. This project was supported by grants from the UNMdP , Fundación Antorchas , CONICET , and ANPCyT to O. I. This work was part of the Doctoral Thesis of E. Fanjul at the UNMdP. E. Fanjul, M. Escapa, D. Montemayor, M. F. Alvarez, and M. Addino were supported by scholarships from CONICET (Argentina). 
593 |a Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras, (IIMyC; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata), CC 573 Correo Central, Mar del Plata, Argentina 
593 |a Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes Mar del Plata, Argentina 
593 |a Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires, Argentina 
690 1 0 |a BIOTURBATION 
690 1 0 |a CRAB 
690 1 0 |a INTERTIDAL 
690 1 0 |a NEOHELICE GRANULATA 
690 1 0 |a ORGANIC MATTER 
690 1 0 |a SALTMARSHES 
690 1 0 |a BENTHOS 
690 1 0 |a BIOAVAILABILITY 
690 1 0 |a BIOGENIC STRUCTURE 
690 1 0 |a BIOTURBATION 
690 1 0 |a BURROWING 
690 1 0 |a CRAB 
690 1 0 |a DETRITUS 
690 1 0 |a INTERTIDAL ENVIRONMENT 
690 1 0 |a MARINE SEDIMENT 
690 1 0 |a ORGANIC MATTER 
690 1 0 |a REMINERALIZATION 
690 1 0 |a SALTMARSH 
690 1 0 |a ATLANTIC OCEAN 
690 1 0 |a ATLANTIC OCEAN (SOUTHWEST) 
690 1 0 |a DECAPODA (CRUSTACEA) 
700 1 |a Escapa, M. 
700 1 |a Montemayor, D. 
700 1 |a Addino, M. 
700 1 |a Alvarez, M.F. 
700 1 |a Grela, M.A. 
700 1 |a Iribarne, O. 
773 0 |d Elsevier B.V., 2015  |g v. 95  |h pp. 206-216  |x 13851101  |w (AR-BaUEN)CENRE-5782  |t J. Sea Res. 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028150185&doi=10.1016%2fj.seares.2014.05.005&partnerID=40&md5=22aae736eb404a0c23e46f71f70a119e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.seares.2014.05.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13851101_v95_n_p206_Fanjul  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13851101_v95_n_p206_Fanjul  |y Registro en la Biblioteca Digital 
961 |a paper_13851101_v95_n_p206_Fanjul  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77725