Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels

In this paper, we analyze several strategies for the estimation of the roughness parameter of the GI 0 distribution. It has been shown that this distribution is able to characterize a large number of targets in monopolarized synthetic aperture radar (SAR) imagery, deserving the denomination of '...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gambini, J.
Otros Autores: Cassetti, J., Lucini, M.M, Frery, A.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Institute of Electrical and Electronics Engineers 2015
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11017caa a22011417a 4500
001 PAPER-16770
003 AR-BaUEN
005 20230518204748.0
008 180614s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85027920014 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gambini, J. 
245 1 0 |a Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels 
260 |b Institute of Electrical and Electronics Engineers  |c 2015 
506 |2 openaire  |e Política editorial 
504 |a Frery, A.C., Müller, H.-J., Yanasse, C.C.F., Sant'Anna, S.J.S., A model for extremely heterogeneous clutter (1997) IEEE Trans. Geosci. Remote Sens., 35 (3), pp. 648-659. , May 
504 |a Mejail, M., Jacobo-Berlles, J.C., Frery, A.C., Bustos, O.H., Classification of SAR images using a general and tractable multiplicative model (2003) Int. J. Remote Sens., 24 (18), pp. 3565-3582 
504 |a Gao, G., Statistical modeling of SAR images: A survey (2010) Sensors, 10 (1), pp. 775-795 
504 |a Vasconcellos, K.L.P., Frery, A.C., Silva, L.B., Improving estimation in speckled imagery (2005) Comput. Statist., 20 (3), pp. 503-519 
504 |a Silva, M., Cribari-Neto, F., Frery, A.C., Improved likelihood inference for the roughness parameter of the GA0 distribution (2008) Environmetrics, 19 (4), pp. 347-368 
504 |a Cribari-Neto, F., Frery, A.C., Silva, M.F., Improved estimation of clutter properties in speckled imagery (2002) Comput. Statist. Data Anal., 40 (4), pp. 801-824 
504 |a Allende, H., Frery, A.C., Galbiati, J., Pizarro, L., M-estimators with asymmetric influence functions: The GA0 distribution case (2006) J. Statist. Comput. Simul., 76 (11), pp. 941-956 
504 |a Bustos, O.H., Lucini, M.M., Frery, A.C., M-estimators of roughness and scale for GA0-modelled SAR imagery (2002) EURASIP J. Adv. Signal Process., 2002 (1), pp. 105-114 
504 |a Anfinsen, S., Eltoft, T., Application of the matrix-variate Mellin transform to analysis of polarimetric radar images (2011) IEEE Trans. Geosci. Remote Sens., 49 (6), pp. 2281-2295. , Jun 
504 |a Bujor, F., Trouve, E., Valet, L., Nicolas, J.-M., Rudant, J.-P., Application of log-cumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images (2004) IEEE Trans. Geosci. Remote Sens., 42 (10), pp. 2073-2084. , Oct 
504 |a Khan, S., Guida, R., Application of Mellin-kind statistics to polarimetric G distribution for SAR data (2014) IEEE Trans. Geosci. Remote Sens., 52 (6), pp. 3513-3528. , Jun 
504 |a Frery, A.C., Cribari-Neto, F., Souza, M.O., Analysis of minute features in speckled imagery with maximum likelihood estimation (2004) EURASIP J. Adv. Signal Process., 2004 (16), pp. 2476-2491 
504 |a Pianto, D.M., Cribari-Neto, F., Dealing with monotone likelihood in a model for speckled data (2011) Comput. Statist. Data Anal., 55, pp. 1394-1409 
504 |a Arndt, C., (2004) Information Measures: Information and Its Description in Science and Engineering, , New York NY USA: Springer 
504 |a Aviyente, S., Ahmad, F., Amin, M.G., Information theoretic measures for change detection in urban sensing applications (2007) Proc. IEEE Workshop Signal Process. Appl. Public Security Forensics, pp. 1-6 
504 |a Vemuri, B., Liu, M., Amari, S.-I., Nielsen, F., Total Bregman divergence and its applications to DTI analysis (2011) IEEE Trans. Med. Imag., 30 (2), pp. 475-483. , Feb 
504 |a Nascimento, A., Cintra, R., Frery, A., Hypothesis testing in speckled data with stochastic distances (2010) IEEE Trans. Geosci. Remote Sens., 48 (1), pp. 373-385. , Jan 
504 |a Silva, W.B., Freitas, C.C., Sant'Anna, S.J.S., Frery, A.C., Classification of segments in PolSAR imagery by minimum stochastic distances between Wishart distributions (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 6 (3), pp. 1263-1273. , Mar 
504 |a Nascimento, A.D.C., Horta, M.M., Frery, A.C., Cintra, R.J., Comparing edge detection methods based on stochastic entropies and distances for PolSAR imagery (2014) IEEE J. Sel. Topics Applied Earth Observ. Remote Sens., 7 (2), pp. 648-663. , Feb 
504 |a Marques, R.C.P., Medeiros, F.N., Santos Nobre, J., SAR image segmentation based on level set approach GA0 model (2012) IEEE Trans. Pattern Anal. Mach. Intell., 34 (10), pp. 2046-2057. , Oct 
504 |a Liese, F., Vajda, I., On divergences and informations in statistics and information theory (2006) IEEE Trans. Inf. Theory, 52 (10), pp. 4394-4412. , Oct 
504 |a Cassetti, J., Gambini, J., Frery, A.C., Parameter estimation in SAR imagery using stochastic distances (2013) Proc. 4th Asia-Pacific Conf. Synthetic Aperture Radar (APSAR), pp. 573-576. , Tsukuba, Japan 
504 |a Han, B., Comaniciu, D., Zhu, Y., Davis, L., Sequential kernel density approximation and its application to real-time visual tracking (2008) IEEE Trans. Pattern Anal. Mach. Intell., 30 (7), pp. 1186-1197. , Jul 
504 |a Chen, S., Probability density functions estimation using Gamma kernels (2000) Ann. Inst. Statist. Math., 52 (3), pp. 471-480 
504 |a Scaillet, O., Density estimation using inverse and reciprocal inverse Gaussian kernels (2004) J. Nonparametric Statist., 16 (1-2), pp. 217-226 
504 |a Bouezmarni, T., Scaillet, O., Consistency of asymmetric kernel density estimators and smoothed histograms with application to income data (2005) Econometric Theory, 21, pp. 390-412 
504 |a Achim, A., Tsakalides, P., Bezerianos, A., SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling (2003) IEEE Trans. Geosci. Remote Sens., 41, pp. 1773-1784 
504 |a Mejail, M.E., Frery, A.C., Jacobo-Berlles, J., Bustos, O.H., Approximation of distributions for SAR images: Proposal, evaluation and practical consequences (2001) Latin Amer. Appl. Res., 31, pp. 83-92 
504 |a Gambini, J., Mejail, M., Berlles, J.J., Frery, A., Accuracy of local edge detection in speckled imagery (2008) Statist. Comput., 18 (1), pp. 15-26 
504 |a Tison, C., Nicolas, J.-M., Tupin, F., Maitre, H., A new statistical model for Markovian classification of urban areas in high-resolution SAR images (2004) IEEE Trans. Geosci. Remote Sens., 42 (10), pp. 2046-2057. , Oct 
504 |a Green, R.F., Outlier-prone and outlier-resistant distributions (1976) Amer. Statist. Assoc., 71 (354), pp. 502-505 
504 |a Danielsson, J., Jorgensen, B.N., Sarma, M., De Vries, C.G., Comparing downside risk measures for heavy tailed (2006) Econ. Lett., 92 (2), pp. 202-208 
504 |a Rojo, J., Heavy-tailed densities (2013) Comput. Statist., 5 (10), pp. 30-40 
504 |a Frery, A.C., Ferrero, S., Bustos, O.H., The influence of training errors, context and number of bands in the accuracy of image classification (2009) Int. J. Remote Sens., 30 (6), pp. 1425-1440 
504 |a Horn, R., The DLR airborne SAR project E-SAR (1996) Proc. IEEE Int. Geosci. Remote Sens. Symp., 3, pp. 1624-1628 
504 |a Babu, G.J., Feigelson, E.D., Astrostatistics: Goodness-of-fit and all that (2006) Proc. Astron. Data Anal. Softw. Syst. XV ASP Conf. Ser., 351, pp. 127-136 
504 |a (2013) A Language and Environment for Statistical Computing, Vienna, , http://www.R-project.org, R Core Team R Austria: R Foundation for Statistical Computing [Online]. Available 
520 3 |a In this paper, we analyze several strategies for the estimation of the roughness parameter of the GI 0 distribution. It has been shown that this distribution is able to characterize a large number of targets in monopolarized synthetic aperture radar (SAR) imagery, deserving the denomination of 'Universal Model.' It is indexed by three parameters: 1) the number of looks (which can be estimated in the whole image); 2) a scale parameter; and 3) the roughness or texture parameter. The latter is closely related to the number of elementary backscatters in each pixel, one of the reasons for receiving attention in the literature. Although there are efforts in providing improved and robust estimates for such quantity, its dependable estimation still poses numerical problems in practice. We discuss estimators based on the minimization of stochastic distances between empirical and theoretical densities and argue in favor of using an estimator based on the triangular distance and asymmetric kernels built with inverse Gaussian densities. We also provide new results regarding the heavy-tailedness of this distribution. © 2008-2012 IEEE.  |l eng 
593 |a Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina 
593 |a Depto. de Ingenieria en Computacion, Universidad Nacional de Tres de Febrero, Pcia. de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Desarrollo Humano, Universidad Nacional de Gral. Sarmiento, Buenos Aires, Argentina 
593 |a Facultad de Ciencias Exactas, Naturales y Agrimensura, Universidad Nacional Del Nordeste, Corrientes, Argentina 
593 |a LaCCAN, Universidade Federal de Alagoas, Maceio, Brazil 
690 1 0 |a FEATURE EXTRACTION 
690 1 0 |a IMAGE TEXTURE ANALYSIS 
690 1 0 |a SPECKLE 
690 1 0 |a STATISTICS 
690 1 0 |a SYNTHETIC APERTURE RADAR (SAR) 
690 1 0 |a FEATURE EXTRACTION 
690 1 0 |a IMAGE TEXTURE 
690 1 0 |a RADAR IMAGING 
690 1 0 |a SPECKLE 
690 1 0 |a STATISTICS 
690 1 0 |a STOCHASTIC SYSTEMS 
690 1 0 |a SYNTHETIC APERTURE RADAR 
690 1 0 |a TEXTURES 
690 1 0 |a IMAGE TEXTURE ANALYSIS 
690 1 0 |a INVERSE GAUSSIAN DENSITY 
690 1 0 |a NUMERICAL PROBLEMS 
690 1 0 |a ROUGHNESS PARAMETERS 
690 1 0 |a SYNTHETIC APERTURE RADAR IMAGERY 
690 1 0 |a TEXTURE PARAMETERS 
690 1 0 |a THEORETICAL DENSITY 
690 1 0 |a THREE PARAMETERS 
690 1 0 |a PARAMETER ESTIMATION 
690 1 0 |a IMAGE ANALYSIS 
690 1 0 |a IMAGERY 
690 1 0 |a ROUGHNESS 
690 1 0 |a SPECKLE 
690 1 0 |a STOCHASTICITY 
690 1 0 |a SYNTHETIC APERTURE RADAR 
650 1 7 |2 spines  |a RADAR 
700 1 |a Cassetti, J. 
700 1 |a Lucini, M.M. 
700 1 |a Frery, A.C. 
773 0 |d Institute of Electrical and Electronics Engineers, 2015  |g v. 8  |h pp. 365-375  |k n. 1  |x 19391404  |t IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027920014&doi=10.1109%2fJSTARS.2014.2346017&partnerID=40&md5=82bfb0c2cf1089a7ec68d01093948de6  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1109/JSTARS.2014.2346017  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19391404_v8_n1_p365_Gambini  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19391404_v8_n1_p365_Gambini  |y Registro en la Biblioteca Digital 
961 |a paper_19391404_v8_n1_p365_Gambini  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77723