Visible and invisible cantor sets

In this chapter we study for which Cantor sets there exists a gauge-function h, such that the h-Hausdorff measure-is positive and finite. We show that the collection of sets for which this is true is dense in the set of all compact subsets of a Polish space X. More general, any generic Cantor set sa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cabrelli, C.
Otros Autores: Darji, U.B, Molter, U.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Birkhauser Boston 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04549caa a22007217a 4500
001 PAPER-16755
003 AR-BaUEN
005 20230518204747.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84908217901 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Cabrelli, C. 
245 1 0 |a Visible and invisible cantor sets 
260 |b Birkhauser Boston  |c 2013 
270 1 0 |m Molter, U.; Departamento de Matemática FCEyN, Universidad de Buenos Aires C1428EGA C.A.B.A., Argentina IMAS - CONICETArgentina; email: umolter@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Besicovitch, A.S., Taylor, S.J., On the complementary intervals of a linear closed set of zero Lebesgue measure (1954) J. London Math. Soc, 29, pp. 449-459 
504 |a Best, E., A closed dimensionless linear set (1939) Proc. Edinburgh Math. Soc, 2 (6), pp. 105-108 
504 |a Cabrelli, C., Hare, K.E., Molter, U.M., Classifying Cantor sets by their fractal dimensions (2010) Proc. Amer. Math. Soc, 138 (11), pp. 3965-3974 
504 |a Cabrelli, C., Mendivil, F., Molter, U.M., Shonkwiler, R., On the h-Hausdorff measure of Cantor sets (2004) Pac. J. Math, 217, pp. 29-43 
504 |a Davies, R.O., Sets which are null or non-sigma-finite for every translation-invariant measure (1971) Mathematika, 18, pp. 161-162 
504 |a Elekes, M., Keleti, T., Borel sets which are null or non-cr -finite for every translation invariant measure (2006) Adv. Math, 201 (1), pp. 102-115 
504 |a Kechris, A.S., (1995) Descriptive Set Theory, Graduate Texts in Mathematics, 156. , Springer-Verlag New York 
504 |a Rogers, C.A., (1998) Hausdorff Measures, Cambridge Math Library, , Cambridge University Press, Cambridge 
520 3 |a In this chapter we study for which Cantor sets there exists a gauge-function h, such that the h-Hausdorff measure-is positive and finite. We show that the collection of sets for which this is true is dense in the set of all compact subsets of a Polish space X. More general, any generic Cantor set satisfies that there exists a translation-invariant measure μ for which the set has positive and finite μ-measure. In contrast, we generalize an example of Davies of dimensionless Cantor sets (i.e., a Cantor set for which any translation invariant measure is either 0 or non-σ-finite) that enables us to show that the collection of these sets is also dense in the set of all compact subsets of a Polish space X. © Springer Science+Business Media New York 2013.  |l eng 
593 |a Departamento de Matemática FCEyN, Universidad de Buenos Aires C1428EGA C.A.B.A., Argentina IMAS - CONICET, Buenos Aires, Argentina 
593 |a Department of Mathematics, University of Louisville, Louisville, KY 40292, United States 
690 1 0 |a CANTOR SET 
690 1 0 |a CANTOR SPACE 
690 1 0 |a CANTOR TREE 
690 1 0 |a COMEAGER SET 
690 1 0 |a DAVIES SET 
690 1 0 |a DIMENSIONLESS SET 
690 1 0 |a GENERIC ELEMENT 
690 1 0 |a HAUSDORFF MEASURE 
690 1 0 |a POLISH SPACE 
690 1 0 |a STRONGLY INVISIBLE SET 
690 1 0 |a TREE 
690 1 0 |a VISIBLE SET 
690 1 0 |a FORESTRY 
690 1 0 |a FRACTALS 
690 1 0 |a CANTOR SETS 
690 1 0 |a CANTOR SPACES 
690 1 0 |a CANTOR TREE 
690 1 0 |a COMEAGER SET 
690 1 0 |a DAVIES SET 
690 1 0 |a DIMENSIONLESS SET 
690 1 0 |a GENERIC ELEMENT 
690 1 0 |a HAUSDORFF MEASURES 
690 1 0 |a STRONGLY INVISIBLE SET 
690 1 0 |a TREE 
690 1 0 |a VISIBLE SET 
690 1 0 |a TOPOLOGY 
700 1 |a Darji, U.B. 
700 1 |a Molter, U. 
773 0 |d Birkhauser Boston, 2013  |g v. 2  |h pp. 11-21  |p Excursions in Harmon. Anal.: The Febr. Fourier Talks at the Norbert Wien. Cent.  |z 9780817683795  |z 9780817683788  |t Excursions in Harmonic Analysis: The February Fourier Talks at the Norbert Wiener Center 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908217901&doi=10.1007%2f978-0-8176-8379-5_2&partnerID=40&md5=a4cd45917d05211849f0718759945eb4  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/978-0-8176-8379-5_2  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_97808176_v2_n_p11_Cabrelli  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97808176_v2_n_p11_Cabrelli  |y Registro en la Biblioteca Digital 
961 |a paper_97808176_v2_n_p11_Cabrelli  |b paper  |c PE 
962 |a info:eu-repo/semantics/bookPart  |a info:ar-repo/semantics/parte de libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 77708