Unfoldings and deformations of rational and logarithmic foliations

We study codimension one foliations in projective space ℙn over ℂ by looking at its first order perturbations: unfoldings and deformations. We give special attention to foliations of rational and logarithmic type. For a differential form ω defining a codimension one foliation, we present a graded mo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Molinuevo, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Association des Annales de l'Institut Fourier 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09285caa a22007697a 4500
001 PAPER-16387
003 AR-BaUEN
005 20230518204723.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84969256133 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Molinuevo, A. 
245 1 0 |a Unfoldings and deformations of rational and logarithmic foliations 
260 |b Association des Annales de l'Institut Fourier  |c 2016 
270 1 0 |m Molinuevo, A.; Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Argentina; email: arielmolinuevo@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Calvo-Andrade, O., Irreducible components of the space of holomorphic foliations (1994) Math. Ann, 299 (4), pp. 751-767 
504 |a Calvo-Andrade, O., (2003) El Espacio de Foliaciones Holomorfas de Codimensión Uno, 2, 139p. , Monografías del Seminario Iberoamericano de Matemáticas [Monographs of the Seminario Iberoamericano de Matemáticas], Instituto Interuniversitario de Estudios de Iberoamerica y Portugal, Tordesillas 
504 |a Camacho, C., Lins Neto, A., The topology of integrable differential forms near a singularity (1982) Inst. Hautes Études Sci. Publ. Math., (55), pp. 5-35 
504 |a Cerveau, D., Lins Neto, A., Irreducible components of the space of holomorphic foliations of degree two in CP(n), n ≥ 3 (1996) Ann. of Math. (2), 143 (3), pp. 577-612 
504 |a Cukierman, F., Gargiulo, J., Massri, C.D., On the Stability of Logarithmic Differential One-forms, , To appear 
504 |a Cukierman, F., Pereira, J.V., Stability of holomorphic foliations with split tangent sheaf (2008) Amer. J. Math., 130 (2), pp. 413-439 
504 |a Cukierman, F., Pereira, J.V., Vainsencher, I., Stability of foliations induced by rational maps (2009) Ann. Fac. Sci. Toulouse Math. (6), 18 (4), pp. 685-715 
504 |a Cukierman, F., Soares, M.G., Vainsencher, I., Singularities of logarithmic foliations (2006) Compos. Math., 142 (1), pp. 131-142 
504 |a Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H., A Computer Algebra System for Polynomial Computations, , http://www.singular.uni-kl.de 
504 |a Dieudonné, J., (1981) ÉLÉMENTS D'analyse. Tome I, 28, pp. xxi and 390. , third ed., Cahiers Scientifiques [Scientific Reports], Gauthier-Villars, Paris, Fondements de l'analyse moderne. [Foundations of modern analysis], Translated from the English by D. Huet, With a foreword by Gaston Julia 
504 |a Dubinsky, M., Massri, C.D., Molinuevo, A., DiffAlg, A Differential Algebra Library, , https://savannah.nongnu.org/projects/diffalg/ 
504 |a Eisenbud, D., (1995) Commutative Algebra, 150, pp. xvi and 785. , Graduate Texts in Mathematics, Springer-Verlag, New York, With a view toward algebraic geometry 
504 |a Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V., (2008) Discriminants, Resultants and Multidimensional Determinants, pp. x and 523. , Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, Reprint of the 1994 edition 
504 |a Gómez-Mont, X., Lins Neto, A., Structural stability of singular holomorphic foliations having a meromorphic first integral (1991) Topology, 30 (3), pp. 315-334 
504 |a Grayson, D.R., Stillman, M.E., Macaulay2, A Software System for Research in Algebraic Geometry, , http://www.math.uiuc.edu/Macaulay2/ 
504 |a Grothendieck, A., Sur quelques points d'algèbre homologique (1957) Tôhoku Math. J. (2), 9, pp. 119-221 
504 |a Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I (1964) Inst. Hautes Études Sci. Publ. Math., (20), p. 259 
504 |a Hartshorne, R., (1977) Algebraic Geometry, (52), pp. xvi and 496. , Springer-Verlag, New York-Heidelberg, Graduate Texts in Mathematics 
504 |a Hartshorne, R., (2010) Deformation Theory, 257, pp. viii and 234. , Graduate Texts in Mathematics, Springer, New York 
504 |a Herrera, M., Lieberman, D., Duality and the de Rham cohomology of infinitesimal neighborhoods (1971) Invent. Math., 13, pp. 97-124 
504 |a Huybrechts, D., (2005) Complex Geometry, pp. xii and 309. , Universitext, Springer-Verlag, Berlin, An introduction 
504 |a Jouanolou, J.P., Équations de Pfaff algébriques (1979) Lecture Notes in Mathematics, 708, pp. v and 255. , Springer, Berlin 
504 |a Lins Neto, A., (2007) Componentes Irredutíveis Dos Espaços de Folheações, pp. iv and 204. , Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 26o Colóquio Brasileiro de Matemática. [26th Brazilian Mathematics Colloquium] 
504 |a Malgrange, B., Frobenius avec singularités. I. Codimension un (1976) Inst. Hautes Études Sci. Publ. Math., (46), pp. 163-173 
504 |a Malgrange, B., Frobenius avec singularités. II. Le cas général (1977) Invent. Math., 39 (1), pp. 67-89 
504 |a Mattei, J.-F., Modules de feuilletages holomorphes singuliers. I. Équisingularité (1991) Invent. Math., 103 (2), pp. 297-325 
504 |a Michor, P.W., (2008) Topics in Differential Geometry, 93, pp. xii and 494. , Graduate Studies in Mathematics, American Mathematical Society, Providence, RI 
504 |a Moerdijk, I., Mrčun, J., (2003) Introduction to Foliations and Lie Groupoids, 91, pp. x and 173. , Cambridge Studies in Advanced Mathematics Cambridge University Press, Cambridge 
504 |a Mumford, D., The red book of varieties and schemes, expanded ed. (1999) Lecture Notes in Mathematics, 1358, pp. x and 306. , Springer-Verlag, Berlin, Includes the Michigan lectures (1974) on curves and their Jacobians, With contributions by Enrico Arbarello 
504 |a Serre, J.-P., Algèbre locale. Multiplicités (1965) Lecture Notes in Mathematics, 11, pp. vii and 188. , Cours au Collège de France, 1957-1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Springer-Verlag, Berlin-New York 
504 |a Suwa, T., Unfoldings of complex analytic foliations with singularities (1983) Japan. J. Math. (N.S.), 9 (1), pp. 181-206 
504 |a Suwa, T., Unfoldings of foliations with multiform first integrals (1983) Ann. Inst. Fourier (Grenoble), 33 (3), pp. 99-112 
504 |a Suwa, T., Unfoldings of meromorphic functions (1983) Math. Ann, 262 (2), pp. 215-224 
504 |a Suwa, T., Unfoldings of codimension one complex analytic foliation singularities (1995) Singularity Theory (Trieste, 1991), pp. 817-865. , World Sci. Publ., River Edge, NJ 
504 |a Warner, F.W., (1983) Foundations of Differentiable Manifolds and Lie Groups, 94, pp. ix and 272. , Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, Corrected reprint of the 1971 edition 
520 3 |a We study codimension one foliations in projective space ℙn over ℂ by looking at its first order perturbations: unfoldings and deformations. We give special attention to foliations of rational and logarithmic type. For a differential form ω defining a codimension one foliation, we present a graded module 𝕌(ω), related to the first order unfoldings of ω. If ω is a generic form of rational or logarithmic type, as a first application of the construction of 𝕌(ω), we classify the first order deformations that arise from first order unfoldings. Then, we count the number of isolated points in the singular set of ω, in terms of a Hilbert polynomial associated to 𝕌(ω). We review the notion of regularity of ω in terms of a long complex of graded modules that we also introduce in this work. We use this complex to prove that, for generic rational and logarithmic foliations, ω is regular if and only if every unfolding is trivial up to isomorphism. © 2016, Association des Annales de l'Institut Fourier. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: The author was fully supported by CONICET, Argentina. 
593 |a Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Buenos Aires, CP C1428EGA, Argentina 
690 1 0 |a CODIMENSION ONE 
690 1 0 |a DEFORMATIONS 
690 1 0 |a FOLIATIONS 
690 1 0 |a UNFOLDINGS 
773 0 |d Association des Annales de l'Institut Fourier, 2016  |g v. 66  |h pp. 1583-1613  |k n. 4  |p Ann. Inst. Fourier  |x 03730956  |w (AR-BaUEN)CENRE-239  |t Annales de l'Institut Fourier 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84969256133&doi=10.5802%2faif.3044&partnerID=40&md5=db60043867d0ae3dd07dc2129c4ce468  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.5802/aif.3044  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03730956_v66_n4_p1583_Molinuevo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03730956_v66_n4_p1583_Molinuevo  |y Registro en la Biblioteca Digital 
961 |a paper_03730956_v66_n4_p1583_Molinuevo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77340