Understanding the Zr and Si interdispersion in Zr1-xSixO2 mesoporous thin films by using FTIR and XANES spectroscopy

Zr-Si mixed mesoporous oxides were obtained in a wide range of proportions, from 0 to 30% and from 70 to 100% of Si, using Si(OEt)4 and ZrCl4 as precursors and Pluronic F127 as a template. The oxide mesostructure was characterized by transmission electron microscopy and 2D-small angle X-ray scatteri...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Andrini, L.
Otros Autores: Angelomé, P.C, Soler-Illia, G.J.A.A, Requejo, Félix Gregorio
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Royal Society of Chemistry 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13406caa a22014897a 4500
001 PAPER-16375
003 AR-BaUEN
005 20250908092448.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84975038073 
030 |a DTARA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Andrini, L. 
245 1 0 |a Understanding the Zr and Si interdispersion in Zr1-xSixO2 mesoporous thin films by using FTIR and XANES spectroscopy 
260 |b Royal Society of Chemistry  |c 2016 
270 1 0 |m Angelomé, P.C.; Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, Argentina; email: angelome@cnea.gov.ar 
504 |a Soler-Illia, G.J.A.A., Sanchez, C., Lebeau, B., Patarin, J., (2002) Chem. Rev., 102, p. 4093 
504 |a Chem. Soc. Rev., 42, p. 3649. , edited by B. Lebeau, A. Galarneau and M. Linden 
504 |a Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S., (1992) Nature, 359, p. 710 
504 |a Brinker, C.J., Lu, Y., Sellinger, A., Fan, H., (1999) Adv. Mater., 11, p. 579 
504 |a Grosso, D., Cagnol, F., Soler-Illia, G.J.A.A., Crepaldi, E.L., Amenitsch, H., Brunet-Bruneau, A., Bourgeois, A., Sanchez, C., (2004) Adv. Funct. Mater., 14, p. 309 
504 |a Sánchez, C., Boissière, C., Grosso, D., Laberty, C., Nicole, L., (2008) Chem. Mater., 20, p. 682 
504 |a Sawa, A., Nakanishi, K., Hanada, T., (2008) Thin Solid Films, 516, p. 4665 
504 |a Del Monte, F., Larsen, W., Mackenzie, J.D., (2000) J. Am. Ceram. Soc., 83, p. 628 
504 |a Miller, J.B., Ko, E.I., (1996) J. Catal., 159, p. 58 
504 |a Wang, Z., Jiang, Y., Hunger, M., Baiker, A., Huang, J., (2014) ChemCatChem, 6, p. 2970 
504 |a Yano, Y., Noguchi, T., (2008); Yano, Y., Noguchi, T., (2008); Gonella, F., Mattei, G., Mazzoldi, P., Battaglin, G., (1999) Chem. Mater., 11, p. 814 
504 |a Shalliker, R.A., Kayillo, S., (2009) Encyclopedia of Chromatography, p. 2444. , Taylor & Francis, 3rd edn 
504 |a Soler-Illia, G.J.A.A., Crepaldi, E.L., Grosso, D., Sanchez, C., (2004) J. Mater. Chem., 14, p. 1879 
504 |a Lomoschitz, M., Peterlik, H., Friedbacher, G., Schubert, U., (2009) J. Mater. Chem., 19, p. 75 
504 |a Wu, Z.-G., Zhao, Y.-X., Liu, D.-S., (2004) Microporous Mesoporous Mater., 68, p. 127 
504 |a Bore, M.T., Marzke, R.F., Ward, T.L., Datye, A.K., (2005) J. Mater. Chem., 15, p. 5022 
504 |a Ortiz De Zárate, D., Gómez-Moratalla, A., Guillem, C., Beltrán, A., Latorre, J., Beltrán, D., Amorós, P., (2006) Eur. J. Inorg. Chem., 2006, p. 2572 
504 |a Kriesel, J.W., Sander, M.S., Tilley, T.D., (2001) Adv. Mater., 13, p. 331 
504 |a Yang, P., Zhao, D., Margolese, D.I., Chmelka, B.F., Stucky, G.D., (1998) Nature, 396, p. 152 
504 |a Yang, P., Zhao, D., Margolese, D.I., Chmelka, B.F., Stucky, G.D., (1999) Chem. Mater., 11, p. 2813 
504 |a Gontier, S., Tuel, A., (1996) Appl. Catal., A, 143, p. 125 
504 |a Wang, X.X., Lefebvre, F., Patarin, J., Basset, J.-M., (2001) Microporous Mesoporous Mater., 42, p. 269 
504 |a Wong, M.S., Huang, H.C., Ying, J.Y., (2002) Chem. Mater., 14, p. 1961 
504 |a Mountjoy, G., Pickup, D.M., Anderson, R., Wallidge, G.W., Holland, M.A., Newport, R.J., Smith, M.E., (2000) Phys. Chem. Chem. Phys., 2, p. 2455 
504 |a Okabayashi, J., Toyoda, S., Kumigashira, H., Oshima, M., Usuda, K., Niwa, M., Liu, G.L., (2005) J. Vac. Sci. Technol., A, 23, p. 1554 
504 |a Evans, A.M., Williamson, J.P.H., Glasser, F.P., (1980) J. Mater. Sci., 15, p. 2325 
504 |a Kingery, W.D., (1960) Introduction to Ceramics, , John Wiley & Sons, New York 
504 |a Fabris, S., Paxton, A.T., Finnis, M.W., (2000) Phys. Rev. B: Condens. Matter, 61, p. 6617 
504 |a Galoisy, L., Pélegrin, E., Arrio, M.A., Ildefonse, P., Calas, G., Ghaleb, D., Fillet, C., Pacaud, F., (1999) J. Am. Ceram. Soc., 82, p. 2219 
504 |a Cormier, L., Dargaud, O., Calas, G., Jousseaume, C., Papin, S., Trcera, N., Cognignia, A., (2015) Mater. Chem. Phys., 152, p. 41 
504 |a Ceresoli, D., Vanderbilt, D., (2006) Phys. Rev. B: Condens. Matter, 74, p. 125108 
504 |a Luo, X., Zhou, W., Ushakov, S.V., Navrotsky, A., Demkov, A.A., (2009) Phys. Rev. B: Condens. Matter, 80, p. 134119 
504 |a López, E.F., Escribano, V.S., Panizza, M., Carnasciali, M.M., Busca, G., (2001) J. Mater. Chem., 11, p. 1891 
504 |a Blanchard, P.E.R., Liu, S., Kennedy, B.J., Ling, C.D., Zhang, Z., Avdeev, M., Cowie, B.C.C., Jangd, L.-Y., (2013) Dalton Trans., 42, p. 14875 
504 |a Koningsberger, D.C., Prins, R., (1987) X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, , ed., John Wiley & Sons 
504 |a Rehr, J.J., Ankudinov, A.L., (2005) Coord. Chem. Rev., 249, p. 131 
504 |a De Groot, F., Kotani, A., (2008) Core Level Spectroscopy of Solids, , CRC Press 
504 |a Crepaldi, E.L., Soler-Illia, G.J.A.A., Grosso, D., Albouy, P.-A., Sanchez, C., (2001) Chem. Commun., p. 1582 
504 |a Crepaldi, E.L., Soler-Illia, G.J.A.A., Grosso, D., Ribot, F., Cagnol, F., Sanchez, C., (2003) J. Am. Chem. Soc., 125, p. 9770 
504 |a Angelomé, P.C., Andrini, L., Fuertes, M.C., Requejo, F.G., Soler-Illia, G.J.A.A., (2010) C. R. Chim., 13, p. 256 
504 |a http://www.lnls.br; Abbate, M., Vicentin, F.C., Compagnon-Cailhol, V., Rocha, M.C., Tolentino, H., (1999) J. Synchrotron Radiat., 6, p. 964 
504 |a http://www.lnls.br; Outka, D.A., Stöhr, J., (1988) J. Chem. Phys., 88, p. 3539 
504 |a Ressler, T., (1998) J. Synchrotron Radiat., 5, p. 118 
504 |a http://www.winxas.de; Innocenzi, P., (2003) J. Non-Cryst. Solids, 316, p. 309 
504 |a Andrianainarivelo, M., Corriu, R., Leclercq, D., Mutin, P.H., Vioux, A., (1996) J. Mater. Chem., 6, p. 1665 
504 |a Zhan, Z., Zeng, H.C., (1999) J. Non-Cryst. Solids, 243, p. 26 
504 |a Miller, J.M., Lakshmi, L.J., (1998) J. Phys. Chem. B, 102, p. 6465 
504 |a Teo, S.H., Zeng, H.C., (2001) J. Phys. Chem. B, 105, p. 9093 
504 |a Kelly, S.D., Hesterberg, D., Ravel, B., Analysis of soils and minerals using X-ray Absorption Spectroscopy (2008) Methods of Soil Analysis, 5, pp. 387-463. , ed. A. L. Ulery and L. R. Dress, SSSA Book Series 
504 |a Ikeno, H., Krause, M., Höche, T., Patzig, C., Hu, Y., Gawronski, A., Tanaka, I., Rüssel, C., (2013) J. Phys.: Condens. Matter, 25, p. 165505 
504 |a Li, P., Chen, I.-W., Penner-Hahn, J.E., (1993) Phys. Rev. B: Condens. Matter, 48, p. 10063 
504 |a Li, P., Chen, I.-W., Penner-Hahn, J.E., (1993) Phys. Rev. B: Condens. Matter, 48, p. 10074 
504 |a Li, P., Chen, I.-W., Penner-Hahn, J.E., (1993) Phys. Rev. B: Condens. Matter, 48, p. 10082 
504 |a Figgs, B.N., Hitchman, M.A., (2000) Ligand Field Theory and Its Applications, , Wiley-VCH, N.Y 
504 |a Crocombette, J.P., Jollet, F., (1994) J. Phys.: Condens. Matter, 6, p. 8341 
504 |a De Groot, F.M.F., Hu, Z.W., Lopez, M.F., Kaindl, G., Guillot, F., Tronc, M., (1994) J. Chem. Phys., 101, p. 6570 
504 |a De Groot, F.M.F., (1995) Physica B, 208-209, p. 15 
504 |a Patzig, C., Höche, T., Hu, Y., Ikeno, H., Krause, M., Dittmer, M., Gawronski, A., Henderson, G.S., (2014) J. Non-Cryst. Solids, 384, p. 47 
504 |a Morinaga, M., Adachi, H., Tsukada, M., (1983) J. Phys. Chem. Solids, 44, p. 301 
504 |a French, R.H., Glass, S.J., Ohuchi, F.S., (1994) Phys. Rev. B: Condens. Matter, 49, p. 5133 
504 |a Ballhausen, J.C., (1962) Introduction to Ligand Field Theory, , McGraw-Hill, New York 
504 |a Figgis, B.N., (1986) Introduction to Ligand Field, , Malabar, Florida 
504 |a Alberts Cotton, F., (1990) Chemical Applications of Group Theory, , Wiley-Interscience, New York, 3rd edn 
504 |a Burns, R., (1995) Mineralogical Applications of Crystal Field Theory, , Cambridge University Press, New York 
504 |a Et Al., , For example, Ikeno 52 demonstrated that four compounds of tetravalent Zr the coordination numbers and symmetries around the Zr ions are different 
504 |a Pelegrin, E., (2000) Centre d'Études de la Vallée du Rhône Site de Marcoul, RAPPORT CEA-R-5929, , Doctoral Thesis, Commissariat à l'EnergieAtomique, France 
504 |a Rehr, J.J., De Mustre, L.J., Zabinsky, S.I., Albers, R.C., (1999) J. Am. Chem. Soc., 113, p. 5135 
504 |a Mozzi, R.L., Warren, B.E., (1969) J. Appl. Crystallogr., 2, p. 164 
504 |a Dargaud, O., Cormier, L., Menguy, N., Galoisy, L., Calas, G., Papin, S., Querel, G., Olivi, L., (2010) J. Non-Cryst. Solids, 356, p. 2928 
504 |a Mountjoy, G., Anderson, R., Newport, R.J., Smith, M.E., (2000) J. Phys.: Condens. Matter, 12, p. 3505 
504 |a Pickup, D.M., Mountjoy, G., Wallidge, G.W., Newport, R.J., Smith, M.E., (1999) Phys. Chem. Chem. Phys., 1, p. 2527 
504 |a Gaultois, M.W., Greedan, J.E., Grosvenor, A.P., (2010) J. Electron Spectrosc. Relat. Phenom., 184, p. 192 
504 |a Blanchard, P.E.R., Liu, S., Kennedy, B.J., Ling, C.D., Zhang, Z., Avdeev, M., Cowie, B.C.C., Jangd, L.-Y., (2013) Dalton Trans., 42, p. 14875 
504 |a Cormier, L., Dargaud, O., Calas, G., Jousseaume, C., Papin, S., Trcera, N., Cognigni, A., (2015) Mater. Chem. Phys., 152, p. 41 
504 |a Thole, B.T., Van Der Laan, G., (1988) Phys. Rev. B: Condens. Matter, 38, p. 1943 
504 |a Thole, B.T., Van Der Laan, G., (1988) Phys. Rev. B: Condens. Matter, 38, p. 3158 
504 |a Li, D., Bancroft, G.M., Fleet, M.E., Feng, X.H., (1995) Phys. Chem. Miner., 22, p. 15 
506 |2 openaire  |e Política editorial 
520 3 |a Zr-Si mixed mesoporous oxides were obtained in a wide range of proportions, from 0 to 30% and from 70 to 100% of Si, using Si(OEt)4 and ZrCl4 as precursors and Pluronic F127 as a template. The oxide mesostructure was characterized by transmission electron microscopy and 2D-small angle X-ray scattering. Fourier transform infrared spectroscopy measurements suggested a local homogeneous interdispersion of both cations. Further selective studies using X-ray Absorption Near Edge Structure (XANES) spectroscopy for separately Zr and Si local environments, allowed for demonstrating that the Zr coordination varies from close to 7 to 6, when its concentration in the mixed oxide is reduced. In addition, it was possible to determine that in mixed oxides with low Zr concentrations, Zr can fit into the spaces occupied by Si in SiO2 pure oxide. An equivalent XANES result was obtained for Si, which is also compatible with the information obtained by FTIR. Furthermore, the Zr-O distance varied from close to 2.2 Å to 1.7 Å when the Zr concentration decreased. Finally, our study also demonstrates the usefulness of XANES to selectively assess the local structure (coordination, symmetry and chemical state) of specific atoms in nanostructured systems. © 2016 The Royal Society of Chemistry.  |l eng 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, INIFTA, CONICET, La Plata, 1900, Argentina 
593 |a Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, San Martín, Buenos Aires, B1650KNA, Argentina 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Nanosistemas, Universidad Nacional de General San Martín, Av. 25 de Mayo y Francia, San Martín Buenos Aires, 1650, Argentina 
593 |a Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata, Argentina 
690 1 0 |a FOURIER TRANSFORM INFRARED SPECTROSCOPY 
690 1 0 |a HIGH RESOLUTION TRANSMISSION ELECTRON MICROSCOPY 
690 1 0 |a SILICON 
690 1 0 |a TRANSMISSION ELECTRON MICROSCOPY 
690 1 0 |a X RAY ABSORPTION 
690 1 0 |a X RAY ABSORPTION NEAR EDGE STRUCTURE SPECTROSCOPY 
690 1 0 |a X RAY SCATTERING 
690 1 0 |a CHEMICAL STATE 
690 1 0 |a LOCAL ENVIRONMENTS 
690 1 0 |a LOCAL STRUCTURE 
690 1 0 |a MESOPOROUS OXIDES 
690 1 0 |a MESOPOROUS THIN FILMS 
690 1 0 |a MESOSTRUCTURES 
690 1 0 |a NANOSTRUCTURED SYSTEMS 
690 1 0 |a PLURONIC F-127 
690 1 0 |a CRYSTAL ATOMIC STRUCTURE 
700 1 |a Angelomé, P.C. 
700 1 |a Soler-Illia, G.J.A.A. 
700 1 |a Requejo, Félix Gregorio 
773 0 |d Royal Society of Chemistry, 2016  |g v. 45  |h pp. 9977-9987  |k n. 24  |p Dalton Trans.  |x 14779226  |t Dalton Transactions 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84975038073&doi=10.1039%2fc6dt00203j&partnerID=40&md5=14ded1bbd64b2f6a8e071e54410dc787  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1039/c6dt00203j  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14779226_v45_n24_p9977_Andrini  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14779226_v45_n24_p9977_Andrini  |y Registro en la Biblioteca Digital 
961 |a paper_14779226_v45_n24_p9977_Andrini  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77328