Climate change over the extratropical Southern Hemisphere: The tale from an ensemble of reanalysis datasets

In this study, a set of five reanalysis datasets [ERA-Interim, NCEP-DOE AMIP-II reanalysis (R2), MERRA, the Twentieth Century Reanalysis (20CR), and the CFS Reanalysis (CFSR)] is used to provide a robust estimation of precipitation change in the middle-to-high latitudes of the Southern Hemisphere du...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Solman, S.A
Otros Autores: Orlanski, I.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Meteorological Society 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10742caa a22011177a 4500
001 PAPER-16334
003 AR-BaUEN
005 20230518204720.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84960906441 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Solman, S.A. 
245 1 0 |a Climate change over the extratropical Southern Hemisphere: The tale from an ensemble of reanalysis datasets 
260 |b American Meteorological Society  |c 2016 
270 1 0 |m Solman, S.A.; CIMA (CONICET-UBA), Ciudad Universitaria, Pabellón II, 2do piso, C1428EGA, Argentina; email: solman@cima.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Arblaster, J., Meehl, G., Contributions of external forcings to southern annular mode trends (2006) J. Climate, 19, pp. 2896-2905 
504 |a Arblaster, J., Meehl, G., Karoly, D., Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases (2011) Geophys. Res. Lett, 38 
504 |a Archer, C.L., Caldeira, K., Historical trends in the jet streams (2008) Geophys. Res. Lett, 35 
504 |a Bender, F.A.M., Ramanathan, V., Tselioudis, G., Changes in extratropical storm track cloudiness 1983-2008: Observational support for a poleward shift (2012) Climate Dyn, 38, pp. 2037-2053 
504 |a Bengtsson, L., Hodges, K.I., On the evaluation of temperature trends in the tropical troposphere (2011) Climate Dyn, 36, pp. 419-439 
504 |a Bosilovich, M.G., Chen, J., Robertson, F.R., Adler, R.F., Evaluation of global precipitation in reanalyses (2008) J. Appl. Meteor. Climatol, 47, pp. 2279-2299 
504 |a Cai, W., Cowan, T., Thatcher, M., Rainfall reductions over Southern Hemisphere semi-arid regions: The role of subtropical dry zone expansion (2012) Sci. Rep, 2, p. 702 
504 |a Catto, J.L., Jakob, C., Berry, G., Nicholls, N., Relating global precipitation to atmospheric fronts (2012) Geophys. Res. Lett, 39 
504 |a Chang, E.K.M., Guo, Y., Xia, X., Zheng, M., Storm-track activity in IPCC AR4/CMIP3 model simulations (2013) J. Climate, 26, pp. 246-260 
504 |a Chelliah, M., Ebisuzaki, W., Weaver, S., Kumar, A., Evaluating the tropospheric variability in National Centers for Environmental Prediction's climate forecast system reanalysis (2011) J. Geophys. Res, 116 
504 |a Chen, G., Held, I.M., Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies (2007) Geophys. Res. Lett, 34 
504 |a Compo, G.P., The Twentieth Century Reanalysis Project (2011) Quart. J. Roy. Meteor. Soc, 137, pp. 1-28 
504 |a Dee, D.P., The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system (2011) Quart. J. Roy. Meteor. Soc, 137, pp. 553-597 
504 |a Delworth, T.L., Zeng, F., Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels (2014) Nat. Geosci, 7, pp. 583-587 
504 |a Delworth, T.L., Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model (2012) J. Climate, 25, pp. 2755-2781 
504 |a Fu, Q., Johanson, C.M., Wallace, J.M., Reitchler, T., Enhanced mid-latitude tropospheric warming in satellite measurements (2006) Science, 312, p. 1179 
504 |a Fyfe, J.C., Gillett, N.P., Marshall, G.J., Human influence on extratropical Southern Hemisphere summer precipitation (2012) Geophys. Res. Lett, 39 
504 |a Gastineau, G., Li, L., Le Treut, H., The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations (2009) J. Climate, 22, pp. 3993-4013 
504 |a Gillett, N.P., Fyfe, J.C., Parker, D.E., Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes (2013) Geophys. Res. Lett, 40, pp. 2302-2306 
504 |a Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Improving the global precipitation record: GPCP Version 2.1 (2009) Geophys. Res. Lett, 36 
504 |a Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J.J., Fiorino, M., Potter, G.L., NCEP-DOE AMIP-II reanalysis (R-2) (2002) Bull. Amer. Meteor. Soc, 83, pp. 1631-1643 
504 |a Lorenz, C., Kunstmann, H., The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis (2012) J. Hydrometeor, 13, pp. 1397-1420 
504 |a Mitchell, D.M., Signatures of naturally induced variability in the atmosphere using multiple reanalysis datasets (2015) Quart. J. Roy. Meteor. Soc, 141, pp. 2011-2031 
504 |a Orlanski, I., What controls recent changes in the circulation of the Southern Hemisphere: Polar stratospheric or equatorial surface temperatures? (2013) Atmos. Climate Sci, 3, pp. 497-509 
504 |a Paek, H., Huang, H.-P., A comparison of the interannual variability in atmospheric angular momentum and length-ofday using multiple reanalysis data sets (2012) J. Geophys. Res, 117 
504 |a Polvani, L.M., Waugh, D.W., Correa, G.J.P., Son, S.W., Stratospheric ozone depletion: The main driver of twentiethcentury atmospheric circulation changes in the Southern Hemisphere (2011) J. Climate, 24, pp. 795-812 
504 |a Rienecker, M.M., MERRA: NASA'sModern-Era Retrospective Analysis for Research and Applications (2011) J. Climate, 24, pp. 3624-3648 
504 |a Saha, S., The NCEP Climate Forecast System Reanalysis (2010) Bull. Amer. Meteor. Soc, 91, pp. 1015-1057 
504 |a Solman, S.A., Orlanski, I., Poleward shift and change of frontal activity in the Southern Hemisphere over the last 40 years (2014) J. Atmos. Sci, 71, pp. 539-552 
504 |a Thompson, D.W.J., Solomon, S., Interpretation of recent Southern Hemisphere climate change (2002) Science, 296, pp. 895-899 
504 |a Trenberth, K.E., Fasullo, J.T., An apparent hiatus in global warming? (2013) Earth's Future, 1, pp. 19-32 
504 |a Trenberth, K.E., Smith, L., Qian, T., Dai, A., Fasullo, J., Estimates of the global water budget and its annual cycle using observational and model data (2007) J. Hydrometeor, 8, pp. 758-769 
504 |a Trenberth, K.E., Fasullo, J.T., Mackaro, J., Atmospheric moisture trans-ports from ocean to land and global energy flows in reanalyses (2011) J. Climate, 24, pp. 4907-4924 
504 |a Xie, P., Arkin, P.A., Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs (1997) Bull. Amer. Meteor. Soc, 78, pp. 2539-2558 
504 |a Yu, L., Trends in latent and sensible heat fluxes over the Southern Ocean (2012) Atmos. Climate Sci, 2, pp. 159-173 
520 3 |a In this study, a set of five reanalysis datasets [ERA-Interim, NCEP-DOE AMIP-II reanalysis (R2), MERRA, the Twentieth Century Reanalysis (20CR), and the CFS Reanalysis (CFSR)] is used to provide a robust estimation of precipitation change in the middle-to-high latitudes of the Southern Hemisphere during the last three decades. Based on several metrics accounting for the eddy activity and moisture availability, an attempt is also made to identify the dynamical mechanisms triggering these changes during extended summer and winter seasons. To that aim, a weighted reanalysis ensemble is built using the inverse of the variance as weighting factors for each variable. Results showed that the weighted reanalysis ensemble reproduced the observed precipitation changes at high and middle latitudes during the two seasons, as depicted by the GPCP dataset. For the extended summer season, precipitation changes were dynamically consistent with changes in the eddy activity, attributed mostly to ozone depletion. For the extended winter season, the eddy activity and moisture availability both contributed to the precipitation changes, with the increased concentration of greenhouse gases being the main driver of the climate change signal. In addition, output from a five-member ensemble of the high-resolution GFDL CM2.5 for the period 1979-2010 was used in order to explore the capability of the model in reproducing both the observed precipitation change and the underlying dynamical mechanisms. The model was able to capture the rainfall change signal. However, the increased availability of moisture from the lower levels controls the precipitation change during both summer and winter. © 2016 American Meteorological Society.  |l eng 
593 |a Centro de Investigaciones del Mar y la Atmosfera, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Ciencias de la Atmosfera y los Oceanos, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Atmospheric and Oceanic Science Program, Princeton University, Princeton, NJ, United States 
690 1 0 |a ATM/OCEAN STRUCTURE/PHENOMENA 
690 1 0 |a CIRCULATION/DYNAMICS 
690 1 0 |a DATABASES 
690 1 0 |a EXTRATROPICAL CYCLONES 
690 1 0 |a LARGE-SCALE MOTIONS 
690 1 0 |a MODELS AND MODELING 
690 1 0 |a OBSERVATIONAL TECHNIQUES AND ALGORITHMS 
690 1 0 |a PRECIPITATION 
690 1 0 |a REANALYSIS DATA 
690 1 0 |a TRENDS 
690 1 0 |a VARIABILITY 
690 1 0 |a DATABASE SYSTEMS 
690 1 0 |a GREENHOUSE GASES 
690 1 0 |a INVERSE PROBLEMS 
690 1 0 |a MOISTURE 
690 1 0 |a OZONE LAYER 
690 1 0 |a PRECIPITATION (CHEMICAL) 
690 1 0 |a STORMS 
690 1 0 |a EXTRATROPICAL CYCLONES 
690 1 0 |a LARGE SCALE MOTION 
690 1 0 |a REANALYSIS 
690 1 0 |a TRENDS 
690 1 0 |a VARIABILITY 
690 1 0 |a CLIMATE CHANGE 
690 1 0 |a ALGORITHM 
690 1 0 |a ATMOSPHERIC MODELING 
690 1 0 |a CLIMATE CHANGE 
690 1 0 |a DATA SET 
690 1 0 |a ENSEMBLE FORECASTING 
690 1 0 |a PRECIPITATION (CLIMATOLOGY) 
690 1 0 |a SOUTHERN HEMISPHERE 
690 1 0 |a TREND ANALYSIS 
690 1 0 |a TROPICAL CYCLONE 
700 1 |a Orlanski, I. 
773 0 |d American Meteorological Society, 2016  |g v. 29  |h pp. 1673-1687  |k n. 5  |p J. Clim.  |x 08948755  |w (AR-BaUEN)CENRE-5480  |t Journal of Climate 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960906441&doi=10.1175%2fJCLI-D-15-0588.1&partnerID=40&md5=a7cf4362f4f07146b3a63e2ef40772f5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1175/JCLI-D-15-0588.1  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08948755_v29_n5_p1673_Solman  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08948755_v29_n5_p1673_Solman  |y Registro en la Biblioteca Digital 
961 |a paper_08948755_v29_n5_p1673_Solman  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77287