Tuning the concentration of dye loaded polymer films for maximum photosensitization efficiency: Phloxine B in poly(2-hydroxyethyl methacrylate)
Fluorescence and singlet molecular oxygen (1O2) quantum yields for phloxine B loaded poly(2-hydroxyethyl methacrylate) thin films are determined at dye concentrations from 0.015 to 22 wt%. Fluorescence self-quenching and the fall off of the 1O2 quantum yield observed above 0.1 wt% are attributed to...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Royal Society of Chemistry
2016
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 09020caa a22006977a 4500 | ||
|---|---|---|---|
| 001 | PAPER-16295 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204717.0 | ||
| 008 | 190411s2016 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84954180318 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a PPSHC | ||
| 100 | 1 | |a Litman, Y. | |
| 245 | 1 | 0 | |a Tuning the concentration of dye loaded polymer films for maximum photosensitization efficiency: Phloxine B in poly(2-hydroxyethyl methacrylate) |
| 260 | |b Royal Society of Chemistry |c 2016 | ||
| 270 | 1 | 0 | |m Rodríguez, H.B.; INQUIMAE (UBA-CONICET)/DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria Pab. IIArgentina; email: hernanrodriguez@inifta.unlp.edu.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Baldini, F., Chester, A.N., Homola, J., Martellucci, S., (2006) Optical Chemical Sensors, , Springer, Dordrecht | ||
| 504 | |a Huang, Y., Wu, S.-T., Multi-Wavelength Laser from Dye-Doped Cholesteric Polymer Films (2010) Opt. Express, 18, pp. 27697-27702 | ||
| 504 | |a Kawata, S., Kawata, Y., Three-Dimensional Optical Data Storage Using Photochromic Materials (2000) Chem. Rev., 100, pp. 1777-1788 | ||
| 504 | |a Waning, R., Muke, S., (2004) Authentication Means. PCT Int. Pat., pp. WO2004087430 | ||
| 504 | |a Dotan, H., Kfir, O., Sharlin, E., Blank, O., Gross, M., Dumchin, I., Ankonina, G., Rothschild, A., Resonant Light Trapping in Ultrathin Films for Water Splitting (2013) Nat. Mater., 12, pp. 158-164 | ||
| 504 | |a Nowakowska, M., Kepczynski, M., Szczubialka, K., New Polymeric Photosensitizers (2001) Pure Appl. Chem., 73, pp. 491-495 | ||
| 504 | |a Priimagi, A., Cattaneo, S., Ras, R.H.A., Valkama, S., Ikkala, O., Kauranen, M., Polymer-Dye Complexes: A Facile Method for High Doping Level and Aggregation Control of Dye Molecules (2005) Chem. Mater., 17, pp. 5798-5802 | ||
| 504 | |a López, S.G., Worringer, G., Rodríguez, H.B., San Román, E., Trapping of Rhodamine 6G Excitation Energy on Cellulose Microparticles (2010) Phys. Chem. Chem. Phys., 12, pp. 2246-2253 | ||
| 504 | |a Mirenda, M., Strassert, C.A., Dicelio, L.E., San Román, E., Dye-Polyelectrolyte Layer-by-Layer Self-Assembled Materials: Molecular Aggregation, Structural Stability, and Singlet Oxygen Photogeneration (2010) ACS Appl. Mater. Interfaces, 2, pp. 1556-1560 | ||
| 504 | |a Opdahl, A., Kim, S.H., Koffas, T.S., Marmo, C., Somorjai, G.A., Surface Mechanical Properties of pHEMA Contact Lenses: Viscoelastic and Adhesive Property Changes on Exposure to Controlled Humidity (2003) J. Biomed. Mater. Res., Part A, 67, pp. 350-356 | ||
| 504 | |a Maldonado-Codina, C., Efron, N., Dynamic Wettability of pHEMA-Based Hydrogel Contact Lenses (2006) Ophthal. Physiol. Opt., 26, pp. 408-418 | ||
| 504 | |a Gandin, E., Lion, Y., Van De Vorst, A., Quantum Yield of Singlet Oxygen Production by Xanthene Derivatives (1983) Photochem. Photobiol., 37, pp. 271-278 | ||
| 504 | |a Duarte, P., Ferreira, D.P., Ferreira MacHado, I., Vieira Ferreira, L.F., Rodríguez, H.B., San Román, E., Phloxine B as a Probe for Entrapment in Microcrystalline Cellulose (2012) Molecules, 17, pp. 1602-1616 | ||
| 504 | |a Rasooly, A., Weisz, A., In Vitro Antibacterial Activities of Phloxine B and Other Halogenated Fluoresceins Against Methicillin-Resistant Staphylococcus aureus (2002) Antimicrob. Agents Chemother., 46, pp. 3650-3653 | ||
| 504 | |a Rasooly, R., Expanding the Bactericidal Action of the Food Color Additive Phloxine B to Gram-Negative Bacteria (2005) FEMS Immunol. Med. Microbiol., 45, pp. 239-244 | ||
| 504 | |a Moreno, D.S., Celedonio, H., Mangan, R.L., Zavala, J.L., Montoya, P., Field Evaluation of a Phototoxic Dye, Phloxine B, Against Three Species of Fruit Flies (Diptera: Tephritidae) (2001) J. Econ. Entomol., 94, pp. 1419-1427 | ||
| 504 | |a Qi, H., Takano, H., Kato, Y., Wu, Q., Ogata, C., Zhu, B., Murata, Y., Nakamura, Y., Hydrogen Peroxide-Dependent Photocytotoxicity by Phloxine B, a Xanthene-Type Food Colorant (2011) Biochim. Biophys. Acta, 1810, pp. 704-712 | ||
| 504 | |a Qi, H., Zhu, B., Abe, N., Shin, Y., Murata, Y., Nakamura, Y., Involvement of Intracellular Oxidative Stress-Sensitive Pathway in Phloxine B-Induced Photocytotoxicity in Human T Lymphocytic Leukemia Cells (2012) Food Chem. Toxicol., 50, pp. 1841-1847 | ||
| 504 | |a McCoy, C.P., Craig, R.A., McGlinchey, S.M., Carson, L., Jones, D.S., Gorman, S.P., Surface Localisation of Photosensitisers on Intraocular Lens Biomaterials for Prevention of Infectious Endophthalmitis and Retinal Protection (2012) Biomaterials, 33, pp. 7952-7958 | ||
| 504 | |a Loring, R.F., Andersen, H.C., Fayer, M.D., Electronic Excited State Transport and Trapping in Solution (1982) J. Chem. Phys., 76, pp. 2015-2027 | ||
| 504 | |a Kulak, L., Bojarski, C., Forward and Reverse Electronic Energy Transport and Trapping in Solution. II. Numerical Results and Monte Carlo Simulations (1995) Chem. Phys., 191, pp. 67-86 | ||
| 504 | |a Usui, Y., Determination of Quantum Yield of Singlet Oxygen Formation by Photosensitization (1973) Chem. Lett., 2, pp. 743-744 | ||
| 504 | |a Nowakowska, M., Solvent Effect on the Quantum Yield of the Self-Sensitized Photoperoxidation of 1,3-Diphenilisobenzofuran (1984) J. Chem. Soc., Faraday Trans. 1, 80, pp. 2119-2126 | ||
| 504 | |a De Girolamo Del Mauro, A., Grimaldi, A.I., La Ferrara, V., Massera, E., Miglietta, M.L., Polichetti, T., Di Francia, G., A Simple Optical Model for the Swelling Evaluation in Polymer Nanocomposites (2009) J. Sens., p. 703206 | ||
| 504 | |a Parker, J.W., Cox, M.E., Mass Transfer of Oxygen in Poly(2-Hydroxyethyl Methacrylate) (1988) J. Polym. Sci., Part A: Polym. Chem., 26, pp. 1179-1188 | ||
| 504 | |a Rabek, J.F., (2012) Photodegradation of Polymers: Physical Characteristics and Applications, p. 87. , Springer Verlag, Berlin, p | ||
| 504 | |a Fleming, G.R., Knight, A.W.E., Morris, J.M., Morrison, R.J.S., Robinson, G.W., Picosecond Fluorescence Studies of Xanthene Dyes (1977) J. Am. Chem. Soc., 99, pp. 4306-4311 | ||
| 504 | |a Tian, Y., Shumway, B.R., Gao, W., Youngbull, C., Holl, M.R., Johnson, R.H., Meldrum, D.R., Influence of Matrices on Oxygen Sensing of Three Sensing Films with Chemically Conjugated Platinum Porphyrin Probes and Preliminary Application for Monitoring of Oxygen Consumption of Escherichia coli (E. Coli) (2010) Sens. Actuators, B, 150, pp. 579-587 | ||
| 504 | |a Valdez-Aguilera, O., Neckers, D.C., Aggregation Phenomena in Xanthene Dyes (1989) Acc. Chem. Res., 22, pp. 171-177 | ||
| 504 | |a Rodríguez, H.B., San Román, E., Duarte, P., Ferreira MacHado, I., Vieira Ferreira, L.F., Eosin y Triplet State as a Probe of Spatial Heterogeneity in Microcrystalline Cellulose (2012) Photochem. Photobiol., 88, pp. 831-839 | ||
| 520 | 3 | |a Fluorescence and singlet molecular oxygen (1O2) quantum yields for phloxine B loaded poly(2-hydroxyethyl methacrylate) thin films are determined at dye concentrations from 0.015 to 22 wt%. Fluorescence self-quenching and the fall off of the 1O2 quantum yield observed above 0.1 wt% are attributed to very weakly interacting close-lying dye molecules acting as energy traps arising from molecular confinement. The maximum singlet oxygen generation efficiency (quantum yield × absorption factor) lies at concentrations around 2 wt%, where fluorescence self quenching amounts to more than 80%. Data are fitted quantitatively by using a quenching radius model involving energy migration and trapping with rQ = 1.2 nm. The present results constitute a proof of concept for the rational design of heterogeneous photosensitizers in general and, particularly, for applications in which the antimicrobial activity of singlet oxygen is central. © 2016 The Royal Society of Chemistry and Owner Societies. |l eng | |
| 593 | |a INQUIMAE (UBA-CONICET)/DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria Pab. II, Buenos Aires, Argentina | ||
| 593 | |a INIFTA (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Diag. 113 y Calle 64, La Plata, Argentina | ||
| 700 | 1 | |a Rodríguez, H.B. | |
| 700 | 1 | |a San Román, E. | |
| 773 | 0 | |d Royal Society of Chemistry, 2016 |g v. 15 |h pp. 80-85 |k n. 1 |p Photochem. Photobiol. Sci. |x 1474905X |t Photochemical and Photobiological Sciences | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84954180318&doi=10.1039%2fc5pp00360a&partnerID=40&md5=f414b904157e35c8f46ffa37f14dc4aa |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1039/c5pp00360a |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_1474905X_v15_n1_p80_Litman |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1474905X_v15_n1_p80_Litman |y Registro en la Biblioteca Digital |
| 961 | |a paper_1474905X_v15_n1_p80_Litman |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 77248 | ||