Tuning the concentration of dye loaded polymer films for maximum photosensitization efficiency: Phloxine B in poly(2-hydroxyethyl methacrylate)

Fluorescence and singlet molecular oxygen (1O2) quantum yields for phloxine B loaded poly(2-hydroxyethyl methacrylate) thin films are determined at dye concentrations from 0.015 to 22 wt%. Fluorescence self-quenching and the fall off of the 1O2 quantum yield observed above 0.1 wt% are attributed to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Litman, Y.
Otros Autores: Rodríguez, H.B, San Román, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Royal Society of Chemistry 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09020caa a22006977a 4500
001 PAPER-16295
003 AR-BaUEN
005 20230518204717.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84954180318 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PPSHC 
100 1 |a Litman, Y. 
245 1 0 |a Tuning the concentration of dye loaded polymer films for maximum photosensitization efficiency: Phloxine B in poly(2-hydroxyethyl methacrylate) 
260 |b Royal Society of Chemistry  |c 2016 
270 1 0 |m Rodríguez, H.B.; INQUIMAE (UBA-CONICET)/DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria Pab. IIArgentina; email: hernanrodriguez@inifta.unlp.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Baldini, F., Chester, A.N., Homola, J., Martellucci, S., (2006) Optical Chemical Sensors, , Springer, Dordrecht 
504 |a Huang, Y., Wu, S.-T., Multi-Wavelength Laser from Dye-Doped Cholesteric Polymer Films (2010) Opt. Express, 18, pp. 27697-27702 
504 |a Kawata, S., Kawata, Y., Three-Dimensional Optical Data Storage Using Photochromic Materials (2000) Chem. Rev., 100, pp. 1777-1788 
504 |a Waning, R., Muke, S., (2004) Authentication Means. PCT Int. Pat., pp. WO2004087430 
504 |a Dotan, H., Kfir, O., Sharlin, E., Blank, O., Gross, M., Dumchin, I., Ankonina, G., Rothschild, A., Resonant Light Trapping in Ultrathin Films for Water Splitting (2013) Nat. Mater., 12, pp. 158-164 
504 |a Nowakowska, M., Kepczynski, M., Szczubialka, K., New Polymeric Photosensitizers (2001) Pure Appl. Chem., 73, pp. 491-495 
504 |a Priimagi, A., Cattaneo, S., Ras, R.H.A., Valkama, S., Ikkala, O., Kauranen, M., Polymer-Dye Complexes: A Facile Method for High Doping Level and Aggregation Control of Dye Molecules (2005) Chem. Mater., 17, pp. 5798-5802 
504 |a López, S.G., Worringer, G., Rodríguez, H.B., San Román, E., Trapping of Rhodamine 6G Excitation Energy on Cellulose Microparticles (2010) Phys. Chem. Chem. Phys., 12, pp. 2246-2253 
504 |a Mirenda, M., Strassert, C.A., Dicelio, L.E., San Román, E., Dye-Polyelectrolyte Layer-by-Layer Self-Assembled Materials: Molecular Aggregation, Structural Stability, and Singlet Oxygen Photogeneration (2010) ACS Appl. Mater. Interfaces, 2, pp. 1556-1560 
504 |a Opdahl, A., Kim, S.H., Koffas, T.S., Marmo, C., Somorjai, G.A., Surface Mechanical Properties of pHEMA Contact Lenses: Viscoelastic and Adhesive Property Changes on Exposure to Controlled Humidity (2003) J. Biomed. Mater. Res., Part A, 67, pp. 350-356 
504 |a Maldonado-Codina, C., Efron, N., Dynamic Wettability of pHEMA-Based Hydrogel Contact Lenses (2006) Ophthal. Physiol. Opt., 26, pp. 408-418 
504 |a Gandin, E., Lion, Y., Van De Vorst, A., Quantum Yield of Singlet Oxygen Production by Xanthene Derivatives (1983) Photochem. Photobiol., 37, pp. 271-278 
504 |a Duarte, P., Ferreira, D.P., Ferreira MacHado, I., Vieira Ferreira, L.F., Rodríguez, H.B., San Román, E., Phloxine B as a Probe for Entrapment in Microcrystalline Cellulose (2012) Molecules, 17, pp. 1602-1616 
504 |a Rasooly, A., Weisz, A., In Vitro Antibacterial Activities of Phloxine B and Other Halogenated Fluoresceins Against Methicillin-Resistant Staphylococcus aureus (2002) Antimicrob. Agents Chemother., 46, pp. 3650-3653 
504 |a Rasooly, R., Expanding the Bactericidal Action of the Food Color Additive Phloxine B to Gram-Negative Bacteria (2005) FEMS Immunol. Med. Microbiol., 45, pp. 239-244 
504 |a Moreno, D.S., Celedonio, H., Mangan, R.L., Zavala, J.L., Montoya, P., Field Evaluation of a Phototoxic Dye, Phloxine B, Against Three Species of Fruit Flies (Diptera: Tephritidae) (2001) J. Econ. Entomol., 94, pp. 1419-1427 
504 |a Qi, H., Takano, H., Kato, Y., Wu, Q., Ogata, C., Zhu, B., Murata, Y., Nakamura, Y., Hydrogen Peroxide-Dependent Photocytotoxicity by Phloxine B, a Xanthene-Type Food Colorant (2011) Biochim. Biophys. Acta, 1810, pp. 704-712 
504 |a Qi, H., Zhu, B., Abe, N., Shin, Y., Murata, Y., Nakamura, Y., Involvement of Intracellular Oxidative Stress-Sensitive Pathway in Phloxine B-Induced Photocytotoxicity in Human T Lymphocytic Leukemia Cells (2012) Food Chem. Toxicol., 50, pp. 1841-1847 
504 |a McCoy, C.P., Craig, R.A., McGlinchey, S.M., Carson, L., Jones, D.S., Gorman, S.P., Surface Localisation of Photosensitisers on Intraocular Lens Biomaterials for Prevention of Infectious Endophthalmitis and Retinal Protection (2012) Biomaterials, 33, pp. 7952-7958 
504 |a Loring, R.F., Andersen, H.C., Fayer, M.D., Electronic Excited State Transport and Trapping in Solution (1982) J. Chem. Phys., 76, pp. 2015-2027 
504 |a Kulak, L., Bojarski, C., Forward and Reverse Electronic Energy Transport and Trapping in Solution. II. Numerical Results and Monte Carlo Simulations (1995) Chem. Phys., 191, pp. 67-86 
504 |a Usui, Y., Determination of Quantum Yield of Singlet Oxygen Formation by Photosensitization (1973) Chem. Lett., 2, pp. 743-744 
504 |a Nowakowska, M., Solvent Effect on the Quantum Yield of the Self-Sensitized Photoperoxidation of 1,3-Diphenilisobenzofuran (1984) J. Chem. Soc., Faraday Trans. 1, 80, pp. 2119-2126 
504 |a De Girolamo Del Mauro, A., Grimaldi, A.I., La Ferrara, V., Massera, E., Miglietta, M.L., Polichetti, T., Di Francia, G., A Simple Optical Model for the Swelling Evaluation in Polymer Nanocomposites (2009) J. Sens., p. 703206 
504 |a Parker, J.W., Cox, M.E., Mass Transfer of Oxygen in Poly(2-Hydroxyethyl Methacrylate) (1988) J. Polym. Sci., Part A: Polym. Chem., 26, pp. 1179-1188 
504 |a Rabek, J.F., (2012) Photodegradation of Polymers: Physical Characteristics and Applications, p. 87. , Springer Verlag, Berlin, p 
504 |a Fleming, G.R., Knight, A.W.E., Morris, J.M., Morrison, R.J.S., Robinson, G.W., Picosecond Fluorescence Studies of Xanthene Dyes (1977) J. Am. Chem. Soc., 99, pp. 4306-4311 
504 |a Tian, Y., Shumway, B.R., Gao, W., Youngbull, C., Holl, M.R., Johnson, R.H., Meldrum, D.R., Influence of Matrices on Oxygen Sensing of Three Sensing Films with Chemically Conjugated Platinum Porphyrin Probes and Preliminary Application for Monitoring of Oxygen Consumption of Escherichia coli (E. Coli) (2010) Sens. Actuators, B, 150, pp. 579-587 
504 |a Valdez-Aguilera, O., Neckers, D.C., Aggregation Phenomena in Xanthene Dyes (1989) Acc. Chem. Res., 22, pp. 171-177 
504 |a Rodríguez, H.B., San Román, E., Duarte, P., Ferreira MacHado, I., Vieira Ferreira, L.F., Eosin y Triplet State as a Probe of Spatial Heterogeneity in Microcrystalline Cellulose (2012) Photochem. Photobiol., 88, pp. 831-839 
520 3 |a Fluorescence and singlet molecular oxygen (1O2) quantum yields for phloxine B loaded poly(2-hydroxyethyl methacrylate) thin films are determined at dye concentrations from 0.015 to 22 wt%. Fluorescence self-quenching and the fall off of the 1O2 quantum yield observed above 0.1 wt% are attributed to very weakly interacting close-lying dye molecules acting as energy traps arising from molecular confinement. The maximum singlet oxygen generation efficiency (quantum yield × absorption factor) lies at concentrations around 2 wt%, where fluorescence self quenching amounts to more than 80%. Data are fitted quantitatively by using a quenching radius model involving energy migration and trapping with rQ = 1.2 nm. The present results constitute a proof of concept for the rational design of heterogeneous photosensitizers in general and, particularly, for applications in which the antimicrobial activity of singlet oxygen is central. © 2016 The Royal Society of Chemistry and Owner Societies.  |l eng 
593 |a INQUIMAE (UBA-CONICET)/DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria Pab. II, Buenos Aires, Argentina 
593 |a INIFTA (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Diag. 113 y Calle 64, La Plata, Argentina 
700 1 |a Rodríguez, H.B. 
700 1 |a San Román, E. 
773 0 |d Royal Society of Chemistry, 2016  |g v. 15  |h pp. 80-85  |k n. 1  |p Photochem. Photobiol. Sci.  |x 1474905X  |t Photochemical and Photobiological Sciences 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84954180318&doi=10.1039%2fc5pp00360a&partnerID=40&md5=f414b904157e35c8f46ffa37f14dc4aa  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1039/c5pp00360a  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_1474905X_v15_n1_p80_Litman  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1474905X_v15_n1_p80_Litman  |y Registro en la Biblioteca Digital 
961 |a paper_1474905X_v15_n1_p80_Litman  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 77248