Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces

We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class A∞. The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation. © 2016 Instytut Matematyczny PAN.

Guardado en:
Detalles Bibliográficos
Autor principal: De Nápoli, P.L
Otros Autores: Drelichman, I., Saintier, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Instytut Matematyczny 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07760caa a22007817a 4500
001 PAPER-16280
003 AR-BaUEN
005 20230518204716.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84969199779 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a De Nápoli, P.L. 
245 1 0 |a Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces 
260 |b Instytut Matematyczny  |c 2016 
506 |2 openaire  |e Política editorial 
504 |a Andersen, K.F., John, R.T., Weighted inequalities for vector-valued maximal functions and singular integrals (1980) Studia Math, 69, pp. 19-31 
504 |a Bui, H.-Q., Weighted besov and triebel lizorkin spaces: Interpolation by the real method (1982) Hiroshima Math. J, 12, pp. 581-605 
504 |a Bui, H.-Q., Paluszynski, M., Taibleson, M.R., A maximal characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces (1996) Studia Math, 119, pp. 219-246 
504 |a Cui, L., Peng, L., Biorthogonal radial multiresolution in dimension three (2009) J. Comput. Appl. Math, 224, pp. 581-591 
504 |a De Nápoli, P.L., Drelichman, I., (2014) Elementary Proofs of Embedding Theorems for Potential Spaces of Radial Functions, , arXiv 1404 7468 
504 |a De Nápoli, P.L., Drelichman, I., Weighted convolution inequalities for radial functions (2015) Ann. Mat. Pura Appl, 194, pp. 167-181 
504 |a De Nápoli, P.L., Drelichman, I., Durán, R.G., Radial solutions for Hamiltonian elliptic systems with weights (2009) Adv Nonlinear Stud, 9, pp. 579-593 
504 |a Duoandikoetxea, J., Moyua, A., Oruetxebarria, O., Seijo, E., Radial Ap weights with applications to the disc multiplier and the Bochner-Riesz operators (2008) Indiana Univ. Math. J, 57, pp. 1261-1281 
504 |a Epperson, J., Frazier, M., An almost orthogonal radial wavelet expansion for radial distributions (1995) J. Fourier Anal. Appl, 1, pp. 311-353 
504 |a Franke, J., On the spaces fs p;q of triebel-lizorkin type: Pointwise multipliers and spaces on domains (1986) Math. Nachr, 125, pp. 29-68 
504 |a García-Cuerva, J., De Rubio Francia, J.L., (1985) Weighted Norm Inequalities and Related Topics, , North-Holland, Amsterdam 
504 |a Haroske, D., Skrzypczak, L., Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights (2008) I , Rev. Mat. Complut, 21, pp. 135-177 
504 |a Haroske, D., Skrzypczak, L., Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights (2011) Ann. Acad. Sci. Fenn. Math, 36, pp. 111-138 
504 |a Haroske, D., Skrzypczak, L., Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, III. Some limiting cases (2011) J. Funct. Spaces Appl, 9, pp. 129-178 
504 |a Jawerth, B., Some observations on besov and lizorkin-Triebel spaces (1977) Math. Scand, 40, pp. 94-104 
504 |a Kokilashvili, V.M., Maximal inequalities and multipliers in weighted Lizorkin-Triebel spaces (1978) Soviet Math. Dokl, 19, pp. 271-276 
504 |a Köhn, T., Entropy numbers in weighted function spaces. The case of intermediate weights (2006) Proc. Steklov Inst. Math, 255, pp. 159-168 
504 |a Köhn, T., Leopold, H.-G., Sickel, W., Skrzypczak, L., Entropy numbers of embeddings of weighted Besov spaces (2006) Constr. Approx, 23, pp. 61-77 
504 |a Köhn, T., Leopold, H.-G., Sickel, W., Skrzypczak, L., Entropy numbers of embeddings of weighted Besov spaces. II (2006) Proc. Edinburgh Math. Soc, 2 (49), pp. 331-359 
504 |a Köhn, T., Leopold, H.-G., Sickel, W., Skrzypczak, L., Entropy numbers of embeddings of weighted Besov spaces. III. Weights of logarithmic type (2007) Math. Z, 255, pp. 1-15 
504 |a Köhn, T., Leopold, H.-G., Sickel, W., Skrzypczak, L., Entropy numbers of Sobolev embeddings of radial Besov spaces (2003) J. Approx. Theory, 121, pp. 244-268 
504 |a Lions, P.-L., Symétrie et compacité dans les espaces de Sobolev (1982) J. Funct. Anal, 49, pp. 315-334 
504 |a Meyries, M., Veraar, M., Sharp embedding results for spaces of smooth functions with power weights (2012) Studia Math, 208, pp. 257-293 
504 |a Meyries, M., Veraar, M., Characterization of a class of embeddings for function spaces with Muckenhoupt weights (2014) Arch. Math. (Basel, 103, pp. 435-449 
504 |a Ni, W.M., A nonlinear Dirichlet problem on the unit ball and its applications (1982) Indiana Univ. Math. J, 31, pp. 801-807 
504 |a Peetre, J., New thoughts on besov spaces (1976) Duke Univ. Math. Ser, 1. , Math. Dep. Duke Univ., Durham, NC 
504 |a Peetre, J., On spaces of Triebel-Lizorkin type (1975) Ark. Mat, 13, pp. 123-130 
504 |a Rauhut, H., Rösler, M., Radial multiresolution in dimension three (2005) Constr. Approx, 22, pp. 193-218 
504 |a Rychkov, V.S., Littlewood-Paley theory and function spaces with Aloc p weights (2001) Math. Nachr, 224, pp. 145-180 
504 |a Sickel, W., Skrzypczak, L., Radial subspaces of besov and lizorkin-Triebel classes: Extended strauss lemma and compactness of embeddings (2000) J. Fourier Anal. Appl, 6, pp. 639-662 
504 |a Sickel, W., Skrzypczak, L., On the interplay of regularity and decay in case of radial functions II. Homogeneous spaces (2012) J. Fourier Anal. Appl, 18, pp. 548-582 
504 |a Sickel, W., Skrzypczak, L., Vybirál, J., On the interplay of regularity and decay in case of radial functions I. Inhomogeneous spaces (2012) Comm. Contemp. Math, 14 (1), p. 60. , 1250005 
504 |a Strauss, W.A., Existence of solitary waves in higher dimensions (1977) Comm. Math. Phys, 55, pp. 149-162 
504 |a Triebel, H., (1983) Theory of Function Spaces, , Geest & Portig, Leipzig 
504 |a Triebel, H., (2006) Theory of Function Spaces III , Monogr. Math, 100. , Birkhäuser, Basel 
520 3 |a We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class A∞. The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation. © 2016 Instytut Matematyczny PAN.  |l eng 
593 |a IMAS (UBA-CONICET) and Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires, 1428, Argentina 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a EMBEDDING THEOREMS 
690 1 0 |a MUCKENHOUPT WEIGHTS 
690 1 0 |a RADIAL FUNCTIONS 
690 1 0 |a WAVELET BASES 
700 1 |a Drelichman, I. 
700 1 |a Saintier, N. 
773 0 |d Instytut Matematyczny, 2016  |g v. 233  |h pp. 47-65  |k n. 1  |p Stud. Math.  |x 00393223  |w (AR-BaUEN)CENRE-251  |t Studia Mathematica 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84969199779&doi=10.4064%2fsm8383-4-2016&partnerID=40&md5=61a3832448131ae8537ac516eff59010  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.4064/sm8383-4-2016  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00393223_v233_n1_p47_DeNapoli  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00393223_v233_n1_p47_DeNapoli  |y Registro en la Biblioteca Digital 
961 |a paper_00393223_v233_n1_p47_DeNapoli  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77233