Carrot fiber (CF) composite films for antioxidant preservation: Particle size effect
The effect of particle size (53, 105 and 210 μm) of carrot fiber (CF) on their hydration properties and antioxidant capacity as well as on the performance of the CF-composite films developed with commercial low methoxyl pectin (LMP) was studied. It was determined that CF contained carotenoids and ph...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier Ltd
2016
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 17317caa a22016697a 4500 | ||
|---|---|---|---|
| 001 | PAPER-16252 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204713.0 | ||
| 008 | 190411s2016 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84944269337 | |
| 024 | 7 | |2 cas |a ascorbic acid, 134-03-2, 15421-15-5, 50-81-7; cellulose, 61991-22-8, 68073-05-2, 9004-34-6; pectin, 9000-69-5; Antioxidants; Ascorbic Acid; Carotenoids; Cellulose; Pectins; Plant Extracts | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a CAPOD | ||
| 100 | 1 | |a Idrovo Encalada, A.M. | |
| 245 | 1 | 0 | |a Carrot fiber (CF) composite films for antioxidant preservation: Particle size effect |
| 260 | |b Elsevier Ltd |c 2016 | ||
| 270 | 1 | 0 | |m Rojas, A.M.; Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, University of Buenos AiresArgentina |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Abdollahi, M., Alboofetileh, M., Rezaei, M., Behrooz, R., Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers (2013) Food Hydrocolloids, 32, pp. 416-424 | ||
| 504 | |a Ahmed, J., Shivhare, U.S., Sandhu, K.S., Thermal degradation kinetics of carotenoids and visual color of papaya puree (2002) Food Engineering and Physical Properties, 67 (7), pp. 2692-2695 | ||
| 504 | |a Alonso-Simón, A., Encina, A.E., García-Angulo, P., Álvarez, J.M., Acebes, J.L., FTIR spectroscopy monitoring of cell wall modifications during the habituation of bean (Phaseolus vulgaris L.) callus cultures to dichlobenil (2004) Plant Science, 167 (6), pp. 1273-1281 | ||
| 504 | |a ASTME 96-80 ASTM, ASTM (1987). Standard methods for water vapor transmission of materials (E 96-80) (1987) Annual Book of ASTM Standards, , American Society for Testing and Materials Philadelphia, PA | ||
| 504 | |a ASTM Method 15.09:E96. Standard test method for water vapor transmission of materials 1983 American Society for Testing and Materials Philadelphia, PA; Azeredo, H.M.C., Miranda, K.W.E., Rosa, M.F., Nascimento, D.M., De Moura, M.R., Edible films from alginate-acerola puree reinforced with cellulose whiskers (2012) LWT - Food Science and Technology, 46, pp. 294-297 | ||
| 504 | |a Basanta, M.F., De Escalada Pla, M.F., Stortz, C.A., Rojas, A.M., Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages (2013) Carbohydrate Polymers, 92, pp. 830-841 | ||
| 504 | |a Benzie, I.F.F., Strain, J.J., The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay (1996) Analytical Biochemistry, 239, pp. 70-76 | ||
| 504 | |a Biswas, A.K., Sahoo, J., Chatli, M.K., A simple UV-Vis spectrophotometric method for determination of β-carotene content in raw carrot, sweet potato and supplemented chicken meat nuggets (2011) LWT - Food Science and Technology, 44, pp. 1809-1813 | ||
| 504 | |a Braccini, I., Pérez, S., Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited (2001) Biomacromolecules, 2, pp. 1089-1096 | ||
| 504 | |a Brand-Williams, W., Cuvelier, M.E., Berset, C., Use of free radical method to evaluate antioxidant activity (1995) LWT - Food Science and Technology, 28, pp. 25-30 | ||
| 504 | |a Brett, C.T., Waldron, K.W., (1996) The Physiology and Biochemistry of Plant Cell Walls, pp. 26-32. , 2nd ed. Chapman & Hall London, UK | ||
| 504 | |a Cadden, A.M., Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers (1987) Journal of Food Science, 52, pp. 595-599 | ||
| 504 | |a Chaikumpollert, O., Methacanon, P., Suchiva, K., Structural elucidation of hemicelluloses from Vetiver grass (2004) Carbohydrate Polymers, 57, pp. 191-196 | ||
| 504 | |a Chau, C.F., Wang, Y.T., Wen, Y.L., Different micronization methods significantly improve the functionality of carrot insoluble fibre (2007) Food Chemistry, 100, pp. 1402-1408 | ||
| 504 | |a Coimbra, M.A., Barros, A., Barros, M., Rutledge, D.N., Delgadillo, I., FTIR spectroscopy as a tool for the analysis of olive pulp cell-wall polysaccharide extracts (1999) Carbohydrate Research, 317, pp. 145-154 | ||
| 504 | |a De Escalada Pla, M.F., Uribe, M., Fissore, E.N., Gerschenson, L.N., Rojas, A.M., Influence of the isolation procedure on the characteristics of fiber-rich products obtained from quince wastes (2010) Journal of Food Engineering, 96 (2), pp. 239-248 | ||
| 504 | |a De'Nobili, M.D., Curto, L.M., Delfino, J.M., Soria, M., Fissore, E.N., Rojas, A.M., Performance of alginate films for retention of l-(+)-ascorbic acid (2013) International Journal of Pharmaceutics, 450, pp. 95-103 | ||
| 504 | |a De'Nobili, M.D., Pérez, C.D., Navarro, D.A., Stortz, C.A., Rojas, A.M., Hydrolytic stability of l-(+)-ascorbic acid in low methoxyl pectin films with potential antioxidant activity at food interfaces (2013) Food and Bioprocess Technology, 6, pp. 186-197 | ||
| 504 | |a De'Nobili, M.D., Rojas, A.M., Abrami, M., Lapasin, R., Grassi, M., Structure characterisation by means of rheological and NMR experiments as a first necessary approach to study the l-(+)-ascorbic acid diffusion from pectin and pectin/alginate films to agar hydrogels that mimic food materials (2015) Journal of Food Engineering, 165, pp. 82-92 | ||
| 504 | |a Del Nobile, M.A., Chillo, S., Falcone, P.M., Laverse, J., Pati, S., Baiano, A., Textural changes of Canestrello Pugliese cheese measured during storage (2007) Journal of Food Engineering, 83, pp. 621-628 | ||
| 504 | |a Dutta, D., Dutta, A., Raychaudhuri, U., Chakraborty, R., Rheological characteristics and thermal degradation kinetics of beta-carotene in pumpkin puree (2006) Journal of Food Engineering, 76, pp. 538-546 | ||
| 504 | |a Ferry, J.D., (1980) Viscoelastic Properties of Polymers, pp. 356-359. , 2nd ed. John Wiley & Sons New York, USA 426-433, 583 | ||
| 504 | |a Frias, J., Peñas, E., Ullate, M., Vidal-Valverde, C., Influence of drying by convective air dryer or power ultrasound on the Vitamin C and β-carotene content of carrots (2010) Journal of Agriculture and Food Chemistry, 58, pp. 10539-10544 | ||
| 504 | |a Gennadios, A., Weller, C.L., Gooding, C.H., Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films (1994) Journal of Food Engineering, 21, pp. 395-409 | ||
| 504 | |a Gordon, M.H., The development of oxidative rancidity in foods (2001) Antioxidants in Food, p. 17. , J. Pokorny, N. Yanishlieva, M. Gordon, Woodhead Publishing Limited Cambridge, UK | ||
| 504 | |a Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) Journal of Research of the National Bureau of Standards, 81 A (1), pp. 89-96 | ||
| 504 | |a Hashimoto, T., Nagayama, T., Chemical composition of ready-to-eat fresh carrot (2004) Journal of the Food Hygienic Society of Japan, 39, pp. 324-328 | ||
| 504 | |a Hatakeyama, H., Hatakeyama, T., Interaction between water and hydrophilic polymers (1998) Thermochimica Acta, 308, pp. 3-22 | ||
| 504 | |a Horcas, I., Fernandez, R., Gomez-Rodriguez, J.M., Colchero, J., WSXM: A software for scanning probe microscopy and a tool for nanotechnology (2007) Review of Scientific Instruments, 78, p. 013705 | ||
| 504 | |a Huq, T., Salmieri, S., Khan, A., Khan, R.A., Le Tien, C., Riedl, B., Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film (2012) Carbohydrate Polymers, 90, pp. 1757-1763 | ||
| 504 | |a Karkalas, J.J., An improved enzymic method for the determination of native and modified starch (1985) Journal of the Science of Food and Agriculture, 36, pp. 1019-1027 | ||
| 504 | |a Labuza, T.P., McNally, L., Gallagher, D., Hawkes, J., Hurtado, F., Stability of intermediate moisture foods. 1. Lipid oxidation (1972) Journal of Food Science, 37, pp. 154-159 | ||
| 504 | |a León, P.G., Chillo, S., Conte, A., Gerschenson, L.N., Del Nobile, M.A., Rojas, A.M., Rheological characterization of deacylated/acylated gellan films carrying l-(+)-ascorbic acid (2009) Food Hydrocolloids, 23, pp. 1660-1669 | ||
| 504 | |a León, P.G., Rojas, A.M., Gellan gum films as carriers of l-(+)-ascorbic acid (2007) Food Research International, 40, pp. 565-575 | ||
| 504 | |a Mancini, M., Moresi, M., Rancini, R., Mechanical properties of alginate gels: Empirical characterization (1999) Journal of Food Engineering, 39, pp. 369-378 | ||
| 504 | |a McCann, M.C., Hammouri, M., Wilson, R., Belton, P., Roberts, K., Fourier transform infrared microspectroscopy is a new way to look at plant cell walls (1992) Plant Physiology, 100 (4), pp. 1940-1947 | ||
| 504 | |a Ministerio de Agricultura, Ganadería, Industria y Comercio de la Provincia de Santa Fe, and N. Aimaretti Santa Fe, el mejor lugar del MERCOSUR para invertir 1999 Santa Fe Gobierno de la Provincia de Santa Fe; Oviasogie, O.P., Okoro, D., Ndiokwere, C.L., Determination of total phenolic amount of some edible fruits and vegetables (2009) African Journal of Biotechnology, 8, pp. 2819-2820 | ||
| 504 | |a Pérez, C.D., Flores, S.K., Marangoni, A.G., Gerschenson, L.N., Rojas, A.M., Development of a high methoxyl-pectin edible film for retention of l-(+)-ascorbic acid (2009) Journal of Agricultural and Food Chemistry, 57, pp. 6844-6855 | ||
| 504 | |a Ping, Z.H., Nguyen, Q.T., Chen, S.M., Zhou, J.Q., Ding, Y.D., States of water in different hydrophilic polymers - DSC and FTIR studies (2001) Polymer, 42, pp. 8461-8467 | ||
| 504 | |a Pulido, R., Bravo, L., Saura-Calixto, F., Antioxidant activity of dietary polyphenols as determined by a modified FRAP assay (2000) Journal of Agriculture and Food Chemistry, 48, pp. 3396-3402 | ||
| 504 | |a Rhagavendra, S.N., Rastogi, N.K., Raghavarao, K.S.M.S., Tharanathan, R.N., Dietary fiber from coconut residue: Effects of different treatments and particle size on the hydration properties (2004) European Food Research and Technology, 218, pp. 563-567 | ||
| 504 | |a Rojas-Graü, M.A., Avena-Bustillos, R.J., Olsen, C.O., Friedman, M.F., Martin-Belloso, O., Pan, Z., Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate-apple puree edible films (2007) Journal of Food Engineering, 81, pp. 634-641 | ||
| 504 | |a Ritger, P.L., Peppas, N.A., A simple equation for description of solute release. I. Fickian and non-Fickian release from nonswellable devices in the form of slabs, spheres, cylinders or discs (1987) Journal of Controlled Release, 5, pp. 23-36 | ||
| 504 | |a Sánchez, O., Cardona, C., Trends in biotechnological production of fuel ethanol from different feedstocks (2008) Bioresource Technology, 99, pp. 5270-5295 | ||
| 504 | |a Scheller, H.V., Ulvskov, P., Hemicelluloses (2010) Annual Review of Plant Biology, 61, pp. 263-289 | ||
| 504 | |a Sharma, K.D., Karki, S., Thakur, N.S., Attri, S., Chemical composition, functional properties and processing of carrot - A review (2012) Journal of Food Science and Technology, 49 (1), pp. 22-32 | ||
| 504 | |a Sirviö, J.A., Kolehmainen, A., Liimatainen, H., Niinimäki, J., Hormi, O.E.O., Biocomposite cellulose-alginate films: Promising packaging materials (2014) Food Chemistry, 151, pp. 343-351 | ||
| 504 | |a Sokal, R.R., Rohlf, J.B., (2000) Biometry: The Principles and Practice of Statistics in Biological Research, pp. 253-380. , W.H. Freeman and Company San Francisco | ||
| 504 | |a Trezza, T.A., Krochta, J.M., Color stability of edible coatings during prolonged storage (2000) Journal of Food Science, 65 (1), pp. 1166-1169 | ||
| 504 | |a Valencia-Chamorro, S.A., Palou, L., Del Río, M.A., Pérez-Gago, M.B., Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review (2011) Critical Reviews in Food Science and Nutrition, 51 (9), pp. 872-900 | ||
| 504 | |a Van Holst, G.J., Varner, J.E., Reinforced polyproline II conformation in a hydroxyproline-rich cell wall glycoprotein from carrot root (1984) Plant Physiology, 74 (2), pp. 247-251 | ||
| 504 | |a Vetter, S., Kunzek, H., The influence of suspension solution conditions on the rehydration of apple cell wall material (2003) European Food Research and Technology, 216, pp. 39-45 | ||
| 504 | |a Vincken, J.P., Schols, H.A., Oomen, R.J.F.J., McCann, M.C., Ulvskov, P., Voragen, A.G.J., If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture (2003) Plant Physiology, 132, pp. 1781-1789 | ||
| 504 | |a Waldron, K.W., Smith, A.C., Parr, A.J., Ng, A., Parker, M., New approaches to understanding and controlling cell separation in relation to fruit and vegetable texture (1997) Trends in Food Science and Technology, 8, pp. 213-221 | ||
| 520 | 3 | |a The effect of particle size (53, 105 and 210 μm) of carrot fiber (CF) on their hydration properties and antioxidant capacity as well as on the performance of the CF-composite films developed with commercial low methoxyl pectin (LMP) was studied. It was determined that CF contained carotenoids and phenolics co-extracted with polysaccharides (80%), rich in pectins (15%). CF showed antioxidant activity and produced homogeneous calcium-LMP-based composites. The 53-μm-CF showed the lowest hydration capability and produced the least elastic and deformable composite film due probably to CF bridged by calcium-crosslinked LMP chains. Antioxidant activity associated to the loaded CF was found in composites. When l-(+)-ascorbic acid (AA) was also loaded, its hydrolytic stability increased with the decrease in CF-particle size, showing the lowest stability in the 0%-CF- and 210 μm-CF-LMP films. Below ≈250 μm, the particle size determined the hydration properties of pectin-containing CF, affecting the microstructure and water mobility in composites. © 2015 Elsevier Ltd. All rights reserved. |l eng | |
| 536 | |a Detalles de la financiación: Secretaría de Educación Superior, Ciencia, Tecnología e Innovación | ||
| 536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica | ||
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas | ||
| 536 | |a Detalles de la financiación: This work was supported by grants from University of Buenos Aires , National Research Council of Argentina ( CONICET ) and ANPCyT . We are also grateful to the SENESCYT (República del Ecuador) for the financial support of the Idrovo Encalada's fellowship. We are also grateful to Carlos Rozas (INTI-Celulosa y Papel, Argentina) for the goniometer use for contact angle, as well as to CP-Kelco (Denmark) for providing the pectin. | ||
| 593 | |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina | ||
| 593 | |a SENESCYT, Ecuador | ||
| 593 | |a National Research Council of Argentina (CONICET), Argentina | ||
| 690 | 1 | 0 | |a ANTIOXIDANT PRESERVATION |
| 690 | 1 | 0 | |a AVERAGE PARTICLE SIZE |
| 690 | 1 | 0 | |a CAROTENOIDS AND PHENOLICS |
| 690 | 1 | 0 | |a CARROT FIBER |
| 690 | 1 | 0 | |a COMPOSITE FILMS |
| 690 | 1 | 0 | |a PECTINS |
| 690 | 1 | 0 | |a AGENTS |
| 690 | 1 | 0 | |a ANTIOXIDANTS |
| 690 | 1 | 0 | |a ASCORBIC ACID |
| 690 | 1 | 0 | |a CALCIUM |
| 690 | 1 | 0 | |a HYDRATION |
| 690 | 1 | 0 | |a PARTICLE SIZE |
| 690 | 1 | 0 | |a PIGMENTS |
| 690 | 1 | 0 | |a ANTI-OXIDANT ACTIVITIES |
| 690 | 1 | 0 | |a ANTIOXIDANT CAPACITY |
| 690 | 1 | 0 | |a AVERAGE PARTICLE SIZE |
| 690 | 1 | 0 | |a HYDROLYTIC STABILITY |
| 690 | 1 | 0 | |a LOW-METHOXYL PECTINS |
| 690 | 1 | 0 | |a PARTICLE SIZE EFFECT |
| 690 | 1 | 0 | |a PECTINS |
| 690 | 1 | 0 | |a PHENOLICS |
| 690 | 1 | 0 | |a COMPOSITE FILMS |
| 690 | 1 | 0 | |a ANTIOXIDANT |
| 690 | 1 | 0 | |a ASCORBIC ACID |
| 690 | 1 | 0 | |a CAROTENOID |
| 690 | 1 | 0 | |a CELLULOSE |
| 690 | 1 | 0 | |a PECTIN |
| 690 | 1 | 0 | |a PLANT EXTRACT |
| 690 | 1 | 0 | |a ANALOGS AND DERIVATIVES |
| 690 | 1 | 0 | |a CARROT |
| 690 | 1 | 0 | |a CHEMISTRY |
| 690 | 1 | 0 | |a DRUG PACKAGING |
| 690 | 1 | 0 | |a DRUG STABILITY |
| 690 | 1 | 0 | |a ELASTICITY |
| 690 | 1 | 0 | |a HYDROLYSIS |
| 690 | 1 | 0 | |a PROCEDURES |
| 690 | 1 | 0 | |a TENSILE STRENGTH |
| 690 | 1 | 0 | |a ANTIOXIDANTS |
| 690 | 1 | 0 | |a ASCORBIC ACID |
| 690 | 1 | 0 | |a CAROTENOIDS |
| 690 | 1 | 0 | |a CELLULOSE |
| 690 | 1 | 0 | |a DAUCUS CAROTA |
| 690 | 1 | 0 | |a DRUG PACKAGING |
| 690 | 1 | 0 | |a DRUG STABILITY |
| 690 | 1 | 0 | |a ELASTICITY |
| 690 | 1 | 0 | |a HYDROLYSIS |
| 690 | 1 | 0 | |a PECTINS |
| 690 | 1 | 0 | |a PLANT EXTRACTS |
| 690 | 1 | 0 | |a TENSILE STRENGTH |
| 700 | 1 | |a Basanta, M.F. | |
| 700 | 1 | |a Fissore, E.N. | |
| 700 | 1 | |a De'Nobili, M.D. | |
| 700 | 1 | |a Rojas, A.M. | |
| 773 | 0 | |d Elsevier Ltd, 2016 |g v. 136 |h pp. 1041-1051 |p Carbohydr Polym |x 01448617 |w (AR-BaUEN)CENRE-603 |t Carbohydrate Polymers | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944269337&doi=10.1016%2fj.carbpol.2015.09.109&partnerID=40&md5=859a57f5fd4869b2759f82945c22a644 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.carbpol.2015.09.109 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_01448617_v136_n_p1041_IdrovoEncalada |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01448617_v136_n_p1041_IdrovoEncalada |y Registro en la Biblioteca Digital |
| 961 | |a paper_01448617_v136_n_p1041_IdrovoEncalada |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 77205 | ||