Vapor-Phase Hydrogenolysis of Glycerol to 1,2-Propanediol over Cu/Al2O3 Catalyst at Ambient Hydrogen Pressure

In this paper, we report that the hydrogenolysis of glycerol can be carried out at atmospheric pressure and low temperature with high selectivity to 1,2-propanediol (1,2-PDO) over reduced copper catalyst. The vapor-phase reaction was carried out over the copper-based catalysts supported on alumina a...

Descripción completa

Detalles Bibliográficos
Autor principal: Dieuzeide, M.L
Otros Autores: Jobbagy, M., Amadeo, Norma Elvira
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10504caa a22009737a 4500
001 PAPER-16138
003 AR-BaUEN
005 20240927142704.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84960364845 
030 |a IECRE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Dieuzeide, M.L. 
245 1 0 |a Vapor-Phase Hydrogenolysis of Glycerol to 1,2-Propanediol over Cu/Al2O3 Catalyst at Ambient Hydrogen Pressure 
260 |b American Chemical Society  |c 2016 
270 1 0 |m Amadeo, N.; ITHES, UBA, CONICET, Laboratorio de Procesos Catalíticos, Departamento de Ing. Química, Facultad de Ingeniería, Universidad de Buenos Aires, Pabellón de Industrias, Ciudad UniversitariaArgentina; email: norma@di.fcen.uba.ar 
504 |a Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., Della Pina, C., From Glycerol to value-added products (2007) Angew. Chem., Int. Ed., 46, pp. 4434-4440 
504 |a Chaminand, J., Djakovitch, L., Gallezot, P., Marion, P., Pinel, C., Rosier, C., Glycerol hydrogenolysis on heterogeneous catalysts (2004) Green Chem., 6, pp. 359-361 
504 |a Dasari, M.A., Kiatsimkul, P., Sutterlin, W.R., Suppes, G.J., Low-pressure hydrogenolysis of glycerol to propylene glycol (2005) Appl. Catal., A, 281, pp. 225-231 
504 |a Kusunoki, Y., Miyazawa, T., Kunimori, K., Tomishige, K., Highly active metal-acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions (2005) Catal. Commun., 6, pp. 645-649 
504 |a Sato, S., Akiyama, M., Takahashi, R., Hara, T., Inui, K., Yokota, M., Vapor-phase reaction of polyols over copper catalysts (2008) Appl. Catal., A, 347, pp. 186-191 
504 |a Huang, L., Zhu, Y.L., Zheng, H.Y., Li, Y.W., Zeng, Z.Y., Continuous production of 1,2-propanediol by the selective hydrogenolysis of solvent-free glycerol under mild conditions (2008) J. Chem. Technol. Biotechnol., 83, pp. 1670-1675 
504 |a Yuan, Z., Wang, J., Wang, L., Xie, W., Chen, P., Hou, Z., Zheng, X., Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts (2010) Bioresour. Technol., 101, pp. 7088-7092 
504 |a Montassier, C., Giraud, D., Barbier, J., (1988) Stud. Surf. Sci. Catal., 41, pp. 165-170 
504 |a Montassier, C., Dumas, J.M., Granger, P., Barbier, J., Deactivation of supported copper based catalysts during polyol conversion in aqueous phase (1995) Appl. Catal., A, 121, pp. 231-244 
504 |a Sato, S., Akiyama, M., Inui, K., Yokota, M., Selective Conversion of Glycerol into 1,2-Propanediol at Ambient Hydrogen Pressure (2009) Chem. Lett., 38, pp. 560-561 
504 |a Akiyama, M., Sato, S., Takahashi, R., Inui, K., Yokota, M., Dehydration-hydrogenation of glycerol into 1,2-propanediol at ambient hydrogen pressure (2009) Appl. Catal., A, 371, pp. 60-66 
504 |a Guo, L., Zhou, J., Mao, J., Guo, X., Zhang, S., Supported Cu catalysts for the selective hydrogenolysis of glycerol to propanediols (2009) Appl. Catal., A, 367, pp. 93-98 
504 |a Maris, E.P., Davis, R.J., Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts (2007) J. Catal., 249, pp. 328-337 
504 |a Wang, S., Zhang, Y., Liu, H., Selective Hydrogenolysis of Glycerol to Propylene Glycol on Cu-ZnO Composite Catalysts: Structural Requirements and Reaction Mechanism (2010) Chem. - Asian J., 5, pp. 1100-1111 
504 |a Xiao, Z., Wang, X., Xiu, J., Wang, Y., Williams, C., Liang, C., Synergetic effect between CuO and Cu+ in the Cu-Cr catalysts forhydrogenolysis of glycerol (2014) Catal. Today, 234, pp. 200-207 
504 |a Balaraju, M., Rekha, V., Sai Prasad, S., Prasad, R.B.N., Lingaiah, N., Selective Hydrogenolysis of Glycerol to 1, 2 Propanediol over Cu-ZnO Catalysts (2008) Catal. Lett., 126, pp. 119-124 
504 |a Wang, S., Liu, H., Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts (2007) Catal. Lett., 117, pp. 62-67 
504 |a Vasiliadou, E., Eggenhuisen, T., Munnik, P., De Jongh, P., De Jong, K.P., Lemonidou, A., Synthesis and performance of highly dispersed Cu/SiO2 catalysts for thehydrogenolysis of glycerol (2014) Appl. Catal., B, 145, pp. 108-119 
504 |a Vila, F., Lopez Granados, M., Ojeda, M., Fierro, J.L.G., Mariscal, R., Glycerol hydrogenolysis to 1,2-propanediol with Cu/γ-Al2O3: Effect of the activation process (2012) Catal. Today, 187, pp. 122-128 
504 |a Bienholz, A., Hofmann, H., Claus, P., Selective hydrogenolysis of glycerol over copper catalysts both in liquid and vapour phase: Correlation between the copper surface area and the catalyst's activity (2011) Appl. Catal., A, 391, pp. 153-157 
504 |a Feng, Y., Yin, H., Wang, A., Shen, L., Yu, L., Jiang, T., Gas phase hydrogenolysis of glycerol catalyzed by Cu/ZnO/MOx (MOx = Al2O3, TiO2, and ZrO2) catalysts (2011) Chem. Eng. J., 168, pp. 403-412 
504 |a Sato, S., Takahashi, R., Sodesawa, T., Yuma, K., Obata, Y., Distinction between Surface and Bulk Oxidation of Cu through N2O Decomposition (2000) J. Catal., 196, pp. 195-199 
504 |a Gervasini, A., Bennici, S., Dispersion and surface states of copper catalysts by temperature-programmed-reduction of oxidized surfaces (s-TPR) (2005) Appl. Catal., A, 281, pp. 199-205 
504 |a Dow, W., Wang, Y., Huang, T., TPR and XRD studies of yttria-doped ceria/g-alumina-supported copper oxide catalyst (1996) J. Catal., 160, pp. 155-170 
504 |a Lopez-Suarez, F.E., Bueno-Lopez, A., Illán-Gómez, M.J., Cu/Al2O3 catalysts for soot oxidation: Copper loading effect (2008) Appl. Catal., B, 84, pp. 651-658 
504 |a Huang, Z., Liu, H., Cui, F., Zuo, J., Chen, J., Xia, Ch., Effects of the precipitation agents and rare earth additives on thestructure and catalytic performance in glycerol hydrogenolysis of Cu/SiO2 catalysts prepared by precipitation-gel method (2014) Catal. Today, 234, pp. 223-232 
504 |a Vasiliadou, E.S., Lemonidou, A.A., Investigating the performance and deactivation behaviour of silica-supported copper catalysts in glycerol hydrogenolysis (2011) Appl. Catal., A, 396, pp. 177-185 
504 |a Chiu, C.W., Tekeei, A., Ronco, J.M., Banks, M.L., Suppes, G.J., Reducing Byproduct formation during Conversion of Glycerol to Propylene Glycol (2008) Ind. Eng. Chem. Res., 47, pp. 6878-6884 
504 |a Miyazawa, T., Koso, S., Kunimori, K., Tomishige, K., Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C (2007) Appl. Catal., A, 329, pp. 30-35 
506 |2 openaire  |e Política editorial 
520 3 |a In this paper, we report that the hydrogenolysis of glycerol can be carried out at atmospheric pressure and low temperature with high selectivity to 1,2-propanediol (1,2-PDO) over reduced copper catalyst. The vapor-phase reaction was carried out over the copper-based catalysts supported on alumina at ambient pressure, and the effects of temperature, space time, and H2 molar fraction in the feed were analyzed. The textural and structural characteristics of the catalysts with increasing copper loading were determined by N2 sorptometry (BET), inductively coupled plasma-atomic spectroscopy (ICP-AES), powder X-ray diffraction (PXRD), temperature-programmed reduction (TPR), and N2O chemisorption (metallic area). On the basis of both characterization and activity results, it was possible to conclude that the hydrogenolysis of glycerol to 1,2-propanediol in vapor phase at atmospheric pressure over copper-based catalysts is a structure sensitive reaction. Activity results suggests that the most probable pathway for the glycerol conversion into 1,2-propanediol under the employed conditions is glycerol is dehydration to hydroxyacetone (acetol), followed by its hydrogenation into 1,2-propanediol. Complete glycerol conversion and a selectivity of 60% to 1,2-propanediol was achieved, using a catalyst with 15 wt % CuO at 200°C, H2 molar fraction of 61%, and atmospheric pressure. © 2016 American Chemical Society.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We thank UBA and CONICET for the financial support. 
593 |a ITHES, UBA, CONICET, Laboratorio de Procesos Catalíticos, Departamento de Ing. Química, Facultad de Ingeniería, Universidad de Buenos Aires, Pabellón de Industrias, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, 1428, Argentina 
593 |a INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, 1428, Argentina 
690 1 0 |a ALUMINA 
690 1 0 |a ATMOSPHERIC PRESSURE 
690 1 0 |a ATMOSPHERIC STRUCTURE 
690 1 0 |a ATMOSPHERIC TEMPERATURE 
690 1 0 |a ATOMIC EMISSION SPECTROSCOPY 
690 1 0 |a ATOMIC SPECTROSCOPY 
690 1 0 |a CATALYSTS 
690 1 0 |a COPPER 
690 1 0 |a GLYCEROL 
690 1 0 |a HYDROGENOLYSIS 
690 1 0 |a HYDROLYSIS 
690 1 0 |a INDUCTIVELY COUPLED PLASMA 
690 1 0 |a TEMPERATURE 
690 1 0 |a VAPOR PHASE EPITAXY 
690 1 0 |a X RAY DIFFRACTION 
690 1 0 |a COPPER-BASED CATALYSTS 
690 1 0 |a EFFECTS OF TEMPERATURE 
690 1 0 |a GLYCEROL CONVERSIONS 
690 1 0 |a POWDER X-RAY DIFFRACTION (PXRD) 
690 1 0 |a STRUCTURAL CHARACTERISTICS 
690 1 0 |a STRUCTURE SENSITIVE REACTIONS 
690 1 0 |a TEMPERATURE-PROGRAMMED REDUCTION 
690 1 0 |a VAPOR PHASE REACTIONS 
690 1 0 |a CATALYST SELECTIVITY 
700 1 |a Jobbagy, M. 
700 1 |a Amadeo, Norma Elvira 
773 0 |d American Chemical Society, 2016  |g v. 55  |h pp. 2527-2533  |k n. 9  |p Ind. Eng. Chem. Res.  |x 08885885  |w (AR-BaUEN)CENRE-316  |t Industrial and Engineering Chemistry Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960364845&doi=10.1021%2facs.iecr.5b03004&partnerID=40&md5=98c25fc907e54178dd7c5d96a3fa6012  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.iecr.5b03004  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08885885_v55_n9_p2527_Dieuzeide  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08885885_v55_n9_p2527_Dieuzeide  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_08885885_v55_n9_p2527_Dieuzeide  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion