Chill-coma recovery time, age and sex determine lipid profiles in Ceratitis capitata tissues

The remodeling of membrane composition by changes in phospholipid head groups and fatty acids (FA) degree of unsaturation has been associated with the maintenance of membrane homeostasis under stress conditions. Overall lipid levels and the composition of cuticle lipids also influence insect stress...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pujol-Lereis, L.M
Otros Autores: Fagali, N.S, Rabossi, A., Catalá, Á., Quesada-Allué, L.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2016
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 18386caa a22015617a 4500
001 PAPER-16085
003 AR-BaUEN
005 20230518204658.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84957837338 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JIPHA 
100 1 |a Pujol-Lereis, L.M. 
245 1 0 |a Chill-coma recovery time, age and sex determine lipid profiles in Ceratitis capitata tissues 
260 |b Elsevier Ltd  |c 2016 
270 1 0 |m Pujol-Lereis, L.M.Franz-Josef-Strauß Allee 11, Germany; email: Luciana.Pujol@klinik.uni-regensburg.de 
506 |2 openaire  |e Política editorial 
504 |a Andersen, J.L., Manenti, T., Sørensen, J.G., MacMillan, H.A., Loeschcke, V., Overgaard, J., How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits (2015) Funct. Ecol., 29, pp. 55-65 
504 |a Arisz, S.A., van Wijk, R., Roels, W., Zhu, J.K., Haring, M.A., Munnik, T., Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase (2013) Front. Plant Sci., 4, pp. 1-15 
504 |a Barrett, J., Biochemistry of survival (2011) Molecular and Physiological Basis of Nematode Survival, p. 282. , CAB International, R.N. Perry, D.A. Wharton (Eds.) 
504 |a Basso, A., Martínez, L., Manso, F., The significance of genetic polymorphisms within and between founder populations of Ceratitis capitata (Wied.) from Argentina (2009) PLoS One, 4 
504 |a Basson, C.H., Nyamukondiwa, C., Terblanche, J.S., Fitness costs of rapid cold-hardening in Ceratitis capitata (2012) Evolution, 66, pp. 296-304 
504 |a Bowler, K., Terblanche, J.S., Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? (2008) Biol. Rev. Camb. Philos. Soc., 83, pp. 339-355 
504 |a Colinet, H., Hance, T., Vernon, P., Water relations, fat reserves, survival, and longevity of a cold-exposed parasitic wasp Aphidius colemani (Hymenoptera: Aphidiinae) (2006) Environ. Entomol., 35, pp. 228-236 
504 |a Crockett, E.L., Cholesterol function in plasma membranes from ectotherms: membrane-specific roles in adaptation to temperature (1998) Am. Zool., 38, pp. 291-304 
504 |a Czajka, M.C., Lee, R.E., A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster (1990) J. Exp. Biol., 148, pp. 245-254 
504 |a Chevin, L.-M., Lande, R., Mace, G.M., Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory (2010) PLoS Biol., 8 
504 |a Chidawanyika, F., Mudavanhu, P., Nyamukondiwa, C., Biologically based methods for pest management in agriculture under changing climates: challenges and future directions (2012) Insects, 3, pp. 1171-1189 
504 |a Chown, S.L., Terblanche, J.S., Physiological diversity in insects: ecological and evolutionary contexts (2006) Adv. Insect Physiol., 33, pp. 50-152 
504 |a David, J.R., Gibert, P., Pla, E., Petavy, G., Karan, D., Moreteau, B., Cold stress tolerance in Drosophila: analysis of chill coma recovery in D. melanogaster (1998) J. Therm. Biol., 23, pp. 291-299 
504 |a Findsen, A., Pedersen, T.H., Petersen, A.G., Nielsen, O.B., Overgaard, J., Why do insects enter and recover from chill coma? Low temperature and high extracellular potassium compromise muscle function in Locusta migratoria (2014) J. Exp. Biol., 217, pp. 1297-1306 
504 |a Gibbs, A.G., Lipid melting and cuticular permeability: new insights into an old problem (2002) J. Insect Physiol., 48, pp. 391-400 
504 |a Gołebiowski, M., Boguś, M., Paszkiewicz, M., Stepnowski, P., Cuticular lipids of insects as potential biofungicides: methods of lipid composition analysis (2011) Anal. Bioanal. Chem., 399, pp. 3177-3191 
504 |a Hazel, J.R., Cold adaptation in ectotherms: regulation of membrane function and cellular metabolism (1989) Animal Adaptation to Cold, pp. 1-50. , Springer, Berlin Heidelberg, L.H. Wang (Ed.) 
504 |a Hazel, J.R., Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? (1995) Annu. Rev. Physiol., 57, pp. 19-42 
504 |a Helmuth, B., Kingsolver, J.G., Carrington, E., Biophysics, physiological ecology, and climate change: does mechanism matter? (2005) Annu. Rev. Physiol., 67, pp. 177-201 
504 |a Hoffman, J.M., Soltow, Q.A., Li, S., Sidik, A., Jones, D.P., Promislow, D.E.L., Effects of age, sex, and genotype on high-sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster (2014) Aging Cell, 13, pp. 596-604 
504 |a Hosler, J.S., Burns, J.E., Esch, H.E., Flight muscle resting potential and species-specific differences in chill-coma (2000) J. Insect Physiol., 46, pp. 621-627 
504 |a Hulbert, A.J., Pamplona, R., Buffenstein, R., Buttemer, W.A., Life and death: metabolic rate, membrane composition, and life span of animals (2007) Physiol. Rev., 87, pp. 1175-1213 
504 |a Israely, N., Ritte, U., Oman, S.D., Inability of Ceratitis capitata (Diptera: Tephritidae) to overwinter in the Judean hills (2004) J. Econ. Entomol., 97, pp. 33-42 
504 |a Khazaeli, A.A., Xiu, L., Curtsinger, J.W., Stress experiments as a means of investigating age-specific mortality in Drosophila melanogaster (1995) Exp. Gerontol., 30, pp. 177-184 
504 |a Koštál, V., Berková, P., Šimek, P., Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae) (2003) Comp. Biochem. Physiol. B, 135, pp. 407-419 
504 |a Koštál, V., Vambera, J., Bastl, J., On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus (2004) J. Exp. Biol., 207, pp. 1509-1521 
504 |a Koštál, V., Yanagimoto, M., Bastl, J., Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea) (2006) Comp. Biochem. Physiol. B, 143, pp. 171-179 
504 |a Koštál, V., Korbelová, J., Rozsypal, J., Zahradníčková, H., Cimlová, J., Tomčala, A., Šimek, P., Long-term cold acclimation extends survival time at 0 °C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster (2011) PLoS One, 6 
504 |a Lee, R.E., Insect cold-hardiness: to freeze or not to freeze - how insects survive low temperatures (1989) Bioscience, 39, pp. 308-313 
504 |a Macdonald, S.S., Rako, L., Batterham, P., Hoffmann, A.A., Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster (2004) J. Insect Physiol., 50, pp. 695-700 
504 |a MacMillan, H.A., Guglielmo, C.G., Sinclair, B.J., Membrane remodeling and glucose in Drosophila melanogaster: a test of rapid cold-hardening and chilling tolerance hypotheses (2009) J. Insect Physiol., 55, pp. 243-249 
504 |a MacMillan, H.A., Sinclair, B.J., Mechanisms underlying insect chill-coma (2011) J. Insect Physiol., 57, pp. 12-20 
504 |a MacMillan, H.A., Williams, C.M., Staples, J.F., Sinclair, B.J., Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 20750-20755 
504 |a Masai, I., Hosoya, T., Kojima, S., Hotta, Y., Molecular cloning of a Drosophila diacylglycerol kinase gene that is expressed in the nervous system and muscle (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 6030-6034 
504 |a Moghadam, N.N., Holmstrup, M., Pertoldi, C., Loeschcke, V., Age-induced perturbation in cell membrane phospholipid fatty acid profile of longevity-selected Drosophila melanogaster and corresponding control lines (2013) Exp. Gerontol., 48, pp. 1362-1368 
504 |a Nyamukondiwa, C., Terblanche, J.S., Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): effects of age, gender and feeding status (2009) J. Therm. Biol., 34, pp. 406-414 
504 |a Nyamukondiwa, C., Kleynhans, E., Terblanche, J.S., Phenotypic plasticity of thermal tolerance contributes to the invasion potential of Mediterranean fruit flies (Ceratitis capitata) (2010) Ecol. Entomol., 35, pp. 565-575 
504 |a Ohtsu, T., Katagiri, C., Kimura, M.T., Hori, S.H., Cold adaptations in Drosophila. Qualitative changes of triacylglycerols with relation to overwintering (1993) J. Biol. Chem., 268, pp. 1830-1834 
504 |a Oroño, L.E., Ovruski, S.M., Norrbom, A.L., Schliserman, P., Colin, C., Martin, C.B., Two new native host plant records for Anastrepha fraterculus (Diptera: Tephritidae) in Argentina (2005) Fla. Entomol., 88, pp. 228-232 
504 |a Overgaard, J., Sorensen, J.G., Petersen, S.O., Loeschcke, V., Holmstrup, M., Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster (2005) J. Insect Physiol., 51, pp. 1173-1182 
504 |a Overgaard, J., Malmendal, A., Sorensen, J.G., Bundy, J.G., Loeschcke, V., Nielsen, N.C., Holmstrup, M., Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster (2007) J. Insect Physiol., 53, pp. 1218-1232 
504 |a Overgaard, J., Tomcala, A., Sorensen, J.G., Holmstrup, M., Krogh, P.H., Simek, P., Kostal, V., Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster (2008) J. Insect Physiol., 54, pp. 619-629 
504 |a Ovruski, S.M., Schliserman, P., Biological control of tephritid fruit flies in Argentina: historical review, current status, and future trends for developing a parasitoid mass-release program (2012) Insects, 3, pp. 870-888 
504 |a Papadopoulos, N.T., Carey, J.R., Katsoyannos, B.I., Kouloussis, N.A., Overwintering of the Mediterranean fruit fly (Diptera: Tephritidae) in Northern Greece (1996) Ann. Entomol. Soc. Am., 89, pp. 526-534 
504 |a Parisi, M., Li, R., Oliver, B., Lipid profiles of female and male Drosophila (2011) BMC Res. Notes, 4, pp. 1-5 
504 |a Parker, D.J., Vesala, L., Ritchie, M.G., Laiho, A., Hoikkala, A., Kankare, M., How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group? (2015) Heredity, 115, pp. 13-21 
504 |a Pujol-Lereis, L.M., Rabossi, A., Quesada-Allué, L.A., Lipid profiles as indicators of functional senescence in the medfly (2012) Exp. Gerontol., 47, pp. 465-472 
504 |a Pujol-Lereis, L.M., Rabossi, A., Quesada-Allué, L.A., Analysis of survival, gene expression and behavior following chill-coma in the medfly Ceratitis capitata: effects of population heterogeneity and age (2014) J. Insect Physiol., 71, pp. 156-163 
504 |a Quesada-Allué, L.A., Belocopitow, E., Lipid-bound oligosaccharides in insects (1978) Eur. J. Biochem., 88, pp. 529-541 
504 |a Rodríguez, J.V., Separación de lípidos neutros y polares por cromatografía de capa delgada (TLC) (2008) Análisis de Lípidos de Biomembranas. Curso Práctico, pp. 81-93. , UNR Editora Rosario, J.V. Rodríguez (Ed.) 
504 |a Scheitz, C.J.F., Guo, Y., Early, A.M., Harshman, L.G., Clark, A.G., Heritability and inter-population differences in lipid profiles of Drosophila melanogaster (2013) PLoS One, 8 
504 |a Shreve, S.M., Kelty, J.D., Lee, R.E., Preservation of reproductive behaviors during modest cooling: rapid cold-hardening fine-tunes organismal response (2004) J. Exp. Biol., 207, pp. 1797-1802 
504 |a Shreve, S.M., Yi, S.X., Lee, R.E., Increased dietary cholesterol enhances cold tolerance in Drosophila melanogaster (2007) Cryo Lett., 28, pp. 33-37 
504 |a Szyniszewska, A.M., Tatem, A.J., Global assessment of seasonal potential distribution of Mediterranean Fruit Fly, Ceratitis capitata (Diptera: Tephritidae) (2014) PLoS One, 9 
504 |a Terblanche, J.S., Clusella-Trullas, S., Deere, J.A., Chown, S.L., Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts (2008) J. Insect Physiol., 54, pp. 114-127 
504 |a Vaupel, J.W., Manton, K.G., Stallard, E., The impact of heterogeneity in individual frailty on the dynamics of mortality (1979) Demography, 16, pp. 439-454 
504 |a Wang, P., Wang, Q., Yang, L., Qin, Q.L., Wu, Y.J., Characterization of lysophosphatidylcholine-induced changes of intracellular calcium in Drosophila S2 cells (2015) Life Sci., 131, pp. 57-62. , (S0024-3205) 
504 |a Weldon, C.W., Terblanche, J.S., Chown, S.L., Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species (2011) J. Therm. Biol., 36, pp. 479-485 
504 |a West-Eberhard, M.J., (2003) Developmental Plasticity and Evolution, , Oxford University Press, New York 
504 |a Wu, D., Rea, S.L., Yashin, A.I., Johnson, T.E., Visualizing hidden heterogeneity in isogenic populations of C. elegans (2006) Exp. Gerontol., 41, pp. 261-270 
520 3 |a The remodeling of membrane composition by changes in phospholipid head groups and fatty acids (FA) degree of unsaturation has been associated with the maintenance of membrane homeostasis under stress conditions. Overall lipid levels and the composition of cuticle lipids also influence insect stress resistance and tissue protection. In a previous study, we demonstrated differences in survival, behavior and Cu/Zn superoxide dismutase gene expression between subgroups of Ceratitis capitata flies that had a reversible recovery from chill-coma and those that developed chilling-injury. Here, we analyzed lipid profiles from comparable subgroups of 15 and 30-day-old flies separated according to their recovery time after a chill-coma treatment. Neutral and polar lipid classes of chill-coma subgroups were separated by thin layer chromatography and quantified by densitometry. FA composition of polar lipids of chill-coma subgroups and non-stressed flies was evaluated using gas chromatography coupled to mass spectrometry. Higher amounts of neutral lipids such as triglycerides, diacylglycerol, wax esters, sterol esters and free esters were found in male flies that recovered faster from chill-coma compared to slower flies. A multivariate analysis revealed changes in patterns of storage and cuticle lipids among subgroups both in males and females. FA unsaturation increased after cold exposure, and was higher in thorax of slower subgroups compared to faster subgroups. The changes in neutral lipid patterns and FA composition depended on recovery time, sex, age and body-part, and were not specifically associated with the development of chilling-injury. An analysis of phospholipid classes showed that the phosphatidylcholine to lysophosphatidylcholine ratio (PC/LPC) was significantly higher, or showed a tendency, in subgroups that may have developed chilling-injury compared to those with a reversible recovery from coma. © 2016.  |l eng 
536 |a Detalles de la financiación: Alexander von Humboldt-Stiftung 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This study was funded by CONICET and ANPCyT . LMP-L was a Research Fellow of CONICET, and is currently a Postdoctoral Fellow of the Alexander von Humboldt Foundation. LAQ-A is a Full Professor at the Biological Chemistry Department, FCEyN, University of Buenos Aires. A.C., A.R., L.A.Q.-A. and N.S.F. belong to the Scientist Career of the CONICET. Appendix A 
593 |a Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Fundación Instituto Leloir. Buenos Aires, Argentina 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT La Plata, CONICET. Facultad de Ciencias, Universidad Nacional de La Plata (UNLP), La Plata, Argentina 
593 |a Institute of Human Genetics, University of Regensburg, Regensburg, Germany 
690 1 0 |a CHILL-COMA RECOVERY 
690 1 0 |a CHILLING-INJURY 
690 1 0 |a FATTY ACID COMPOSITION 
690 1 0 |a LIPID PROFILES 
690 1 0 |a MEDFLY 
690 1 0 |a STEROL ESTERS 
690 1 0 |a AGE 
690 1 0 |a CHEMICAL COMPOSITION 
690 1 0 |a ESTER 
690 1 0 |a FATTY ACID 
690 1 0 |a FLY 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a INJURY 
690 1 0 |a LIPID 
690 1 0 |a OXIDE 
690 1 0 |a PHOSPHOLIPID 
690 1 0 |a SEX DETERMINATION 
690 1 0 |a STEROL 
690 1 0 |a CERATITIS CAPITATA 
690 1 0 |a HEXAPODA 
690 1 0 |a ANIMAL 
690 1 0 |a COLD 
690 1 0 |a FEMALE 
690 1 0 |a LIPID METABOLISM 
690 1 0 |a MALE 
690 1 0 |a MEDITERRANEAN FRUIT FLY 
690 1 0 |a METABOLISM 
690 1 0 |a TIME FACTOR 
690 1 0 |a ANIMALS 
690 1 0 |a CERATITIS CAPITATA 
690 1 0 |a COLD TEMPERATURE 
690 1 0 |a FEMALE 
690 1 0 |a LIPID METABOLISM 
690 1 0 |a MALE 
690 1 0 |a TIME FACTORS 
650 1 7 |2 spines  |a HOMEOSTASIS 
700 1 |a Fagali, N.S. 
700 1 |a Rabossi, A. 
700 1 |a Catalá, Á. 
700 1 |a Quesada-Allué, L.A. 
773 0 |d Elsevier Ltd, 2016  |g v. 87  |h pp. 53-62  |p J. Insect Physiol.  |x 00221910  |w (AR-BaUEN)CENRE-668  |t Journal of Insect Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957837338&doi=10.1016%2fj.jinsphys.2016.02.002&partnerID=40&md5=ccdc09d970255b06cb90ace49fa130d9  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jinsphys.2016.02.002  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00221910_v87_n_p53_PujolLereis  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221910_v87_n_p53_PujolLereis  |y Registro en la Biblioteca Digital 
961 |a paper_00221910_v87_n_p53_PujolLereis  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI