Modelling dengue epidemic spreading with human mobility

We explored the effect of human mobility on the spatio-temporal dynamics of Dengue with a stochastic model that takes into account the epidemiological dynamics of the infected mosquitoes and humans, with different mobility patterns of the human population. We observed that human mobility strongly af...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Barmak, D.H
Otros Autores: Dorso, Claudio Oscar, Otero, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12380caa a22010937a 4500
001 PAPER-16072
003 AR-BaUEN
005 20250226092626.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84952802333 
030 |a PHYAD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Barmak, D.H. 
245 1 0 |a Modelling dengue epidemic spreading with human mobility 
260 |b Elsevier B.V.  |c 2016 
270 1 0 |m Otero, M.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: mjotero@df.uba.ar 
504 |a Gubler, D.J., Dengue and dengue hemorrhagic fever (1998) Clin. Microbiol. Rev., 11, pp. 480-496 
504 |a Newton, E.A.C., Reiter, P., A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics (1992) Am. J. Trop. Med. Hyg., 47, pp. 709-720 
504 |a Esteva, L., Vargas, C., Analysis of a dengue disease transmission model (1998) Math. Biosci., 150, pp. 131-151 
504 |a Esteva, L., Vargas, C., A model for dengue disease with variable human population (1999) J. Math. Biol., 38, pp. 220-240 
504 |a Esteva, L., Vargas, C., Influence of vertical and mechanical transmission on the dynamics of dengue disease (2000) Math. Biosci., 167, pp. 51-64 
504 |a Bartley, L.M., Donnelly, C.A., Garnett, G.P., The seasonal pattern of dengue in endemic areas: Mathematical models of mechanisms (2002) Trans. R. Soc. Trop. Med. Hyg., 96, pp. 387-397 
504 |a Pongsumpun, P., Tang, I.M., Transmission of dengue hemorrhagic fever in an age structured population (2003) Math. Comput. Modelling, 37, pp. 949-961 
504 |a Chowell, G., Diaz-Dueñas, P., Miller, J., Alcazar-Velazco, A., Hyman, J., Fenimore, P., Castillo-Chavez, C., Estimation of the reproduction number of dengue fever from spatial epidemic (2007) Math. Biosci., 208, pp. 571-589 
504 |a Favier, C., Schmit, D., Müller-Graf, C.D.M., Cazelles, B., Degallier, N., Mondet, B., Dubois, M.A., Influence of spatial heterogeneity on an emerging infectious disease: The case of dengue epidemics (2005) Proc. R. Soc. Lond. Biol. Sci., 272 (1568), pp. 1171-1177 
504 |a Focks, D.A., Haile, D.C., Daniels, E., Moun, G.A., Dynamics life table model for Aedes aegypti: Analysis of the literature and model development (1993) J. Med. Entomol., 30, pp. 1003-1018 
504 |a Focks, D.A., Haile, D.C., Daniels, E., Mount, G.A., Dynamic life table model for Aedes aegypti: Simulations results (1993) J. Med. Entomol., 30, pp. 1019-1029 
504 |a Focks, D.A., Haile, D.C., Daniels, E., Keesling, D., A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation and samples of simulation results (1995) Am. J. Trop. Med. Hyg., 53, pp. 489-505 
504 |a Otero, M., Solari, H.G., Mathematical model of dengue disease transmission by Aedes aegypti mosquito (2010) Math. Biosci., 223, pp. 32-46 
504 |a Otero, M., Solari, H.G., Schweigmann, N., A stochastic population dynamic model for Aedes Aegypti: Formulation and application to a city with temperate climate (2006) Bull. Math. Biol., 68, pp. 1945-1974 
504 |a Otero, M., Schweigmann, N., Solari, H.G., A stochastic spatial dynamical model for Aedes aegypti (2008) Bull. Math. Biol., 70, pp. 1297-1325 
504 |a Otero, M., Barmak, D.H., Dorso, C.O., Solari, H.G., Natiello, M.A., Modeling dengue outbreaks (2011) Math. Biosci., 232 (2), pp. 87-95 
504 |a Barmak, D.H., Dorso, C.O., Otero, M., Solari, H.G., Dengue epidemics and human mobility (2011) Phys. Rev. E, 84 E 
504 |a Liebman, K.A., Stoddard, S.T., Morrison, A.C., Rocha, C., Minnick, S., Sihuincha, M., Russell, K.L., Scott, T.W., Spatial dimensions of dengue virus transmission across interepidemic and epidemic periods in iquitos, Peru (1999-2003) (2012) PLoS Negl. Trop. Dis., 6 (2), p. e1472 
504 |a Vazquez-Prokopec, G.M., Kitron, U., Montgomery, B., Horne, P., Ritchie, S.A., Quantifying the spatial dimension of dengue virus epidemic spread within a tropical urban environment (2010) PLoS Negl. Trop. Dis., 4 (12), p. e920 
504 |a Morrison, A.C., Getis, A., Santiago, M., Rigau-Perez, J., Reiter, P., Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, puerto rico, 1991-1992 (1998) Am. J. Trop. Med. Hyg., 58 (3), pp. 287-298 
504 |a Rotela, C., Fouque, F., Lamfri, M., Sabatier, P., Introini, V., Zaidenberg, M., Scavuzzo, C., Space-time analysis of the dengue spreading dynamics in the 2004 Tartagal outbreak, northern Argentina (2007) Acta Trop., 103, pp. 1-13 
504 |a Rhee, I., Shin, M., Hong, S., Lee, K., Chong, S., (2007) On the Levy-walk Nature of Human Mobility: Do Humans Walk Like Monkeys?, Tech. Rep., , Computer Science Department, North Carolina State University 
504 |a Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L., Understanding individual human mobility patterns (2008) Nature, 453, pp. 779-782 
504 |a Brockmann, D., Hufnagel, L., Geisel, T., The scaling laws of human travel (2006) Nature, 439, pp. 462-465 
504 |a Brockmann, L.H.D., (2007) The Scaling Law of Human Travel - A Message from George, , World Scientific 
504 |a Chowell, G., Hyman, J.M., Eubank, S., Castillo-Chavez, C., Scaling laws for the movement of people between locations in a large city (2003) Phys. Rev. E, 68 (6), pp. 661021-661027 
504 |a Cattuto, C., Van Den Broeck, W., Barrat, A., Colizza, V., Pinton, J.-F., Vespignani, A., Dynamics of person-to-person interactions from distributed RFID sensor networks (2010) PLoS One, 5, p. e11596. , http://dx.doi.org/10.1371%2Fjournal.pone.0011596 
504 |a Candia, J., Gonzalez, M.C., Wang, P., Schoenharl, T., Madey, G., Laszlo Barabasi, A., Uncovering individual and collective human dynamics from mobile phone records (2008) J. Phys. A, 41 (22) 
504 |a Wang, P., Gonzalez, M.C., Understanding spatial connectivity of individuals with non-uniform population density (2009) Philos. Trans. R. Soc. Lond. Ser. A, 367, pp. 3321-3329 
504 |a Epstein, J.M., Parker, J., Cummings, D., Hammond, R.A., Coupled contagion dynamics of fear and disease: Mathematical and computational explorations (2008) PLoS One, 3, p. e3955. , http://dx.doi.org/10.1371%2Fjournal.pone.0003955 
504 |a Zanette, D.H., Gusman, S.R., Infection spreading in a population with evolving contacts (2007) J. Biol. Phys., 34, pp. 135-148 
504 |a Lig, W., Jia-Ren, Y., Jian-Guo, Z., Zi-Ran, L., Controlling disease spread on networks with feedback mechanism (2007) Chin. Phys., 16 (9), pp. 2498 and 
504 |a Fefferman, N.H., Ng, K.L., How disease models in static networks can fail to approximate disease in dynamic networks (2007) Phys. Rev. E, 76 (3), pp. 031919 and 
504 |a Funk, S., Salathé, M., Jansen, V.A.A., Modelling the influence of human behaviour on the spread of infectious diseases: A review (2010) J. R. Soc. Interface, 7 (50), pp. 1247-1256 
504 |a Zhao, Z., Calderón, J.P., Xu, C., Zao, G., Fenn, D., Sornette, D., Crane, R., Johnson, N.F., Effect of social group dynamics on contagion (2010) Phys. Rev. E, 81 (5), pp. 056107 and 
504 |a Buscarino, A., Fortuna, L., Frasca, M., Latora, V., Disease spreading in populations of moving agents (2008) Eur. Phys. Lett., 82 (3), p. 38002 
504 |a Li, X., Cao, L., Cao, G.F., Epidemic prevalence on random mobile dynamical networks: Individual heterogeneity and correlation (2010) Eur. Phys. J. B, 75, pp. 319-326 
504 |a Keeling, M., Eames, K.T., Networks and epidemic models (2005) J. R. Soc. Interface, 2 (4), pp. 295-307 
504 |a Risau-Gusmans, S., Zanette, D.H., Contact switching as a control strategy for epidemic outbreaks (2009) J. Theoret. Biol., 257 (1), pp. 52-60 
504 |a Gross, T., D'Lima, C.J., Blasius, B., Epidemic dynamics on an adaptive network (2006) Phys. Rev. Lett., 96 (20), pp. 208701 and 
504 |a Pongsumpun, P., Lopez, D.G., Favier, C., Torres, L., Llosa, J., Dubois, M., Dynamics of dengue epidemics in urban contexts (2008) Trop. Med. Int. Health, 13, pp. 1180-1187 
504 |a Stoddard, S.T., Morrison, A.C., Vazquez-Prokopec, G.M., Soldan, V.P., Kochel, T.J., Kitron, U., Elder, J.P., Scott, T.W., The role of human movement in the transmission of vector-borne pathogens (2009) PLoS Negl. Trop. Dis., 3 (7), p. e481 
504 |a Sattenspiel, L., (2009) The Geographic Spread of Infectious Diseases: Models and Applications, , Princeton University 
504 |a Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A., Dynamical patterns of epidemic outbreaks in complex heterogeneous networks (2005) J. Theoret. Biol., 235, pp. 275-288 
506 |2 openaire  |e Política editorial 
520 3 |a We explored the effect of human mobility on the spatio-temporal dynamics of Dengue with a stochastic model that takes into account the epidemiological dynamics of the infected mosquitoes and humans, with different mobility patterns of the human population. We observed that human mobility strongly affects the spread of infection by increasing the final size and by changing the morphology of the epidemic outbreaks. When the spreading of the disease is driven only by mosquito dispersal (flight), a main central focus expands diffusively. On the contrary, when human mobility is taken into account, multiple foci appear throughout the evolution of the outbreaks. These secondary foci generated throughout the outbreaks could be of little importance according to their mass or size compared with the largest main focus. However, the coalescence of these foci with the main one generates an effect, through which the latter develops a size greater than the one obtained in the case driven only by mosquito dispersal. This increase in growth rate due to human mobility and the coalescence of the foci are particularly relevant in temperate cities such as the city of Buenos Aires, since they give more possibilities to the outbreak to grow before the arrival of the low-temperature season. The findings of this work indicate that human mobility could be the main driving force in the dynamics of vector epidemics. © 2015 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT   20020110100205 
536 |a Detalles de la financiación: We acknowledge the support of the University of Buenos Aires (Argentina) through grant UBACyT   20020110100205 . 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina 
593 |a IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a FOCI COALESCENCE 
690 1 0 |a HUMAN MOBILITY 
690 1 0 |a STOCHASTIC MODELLING 
690 1 0 |a VECTOR-BORNE DISEASES 
690 1 0 |a DYNAMICS 
690 1 0 |a EPIDEMIOLOGY 
690 1 0 |a STOCHASTIC SYSTEMS 
690 1 0 |a TEMPERATURE 
690 1 0 |a DRIVING FORCES 
690 1 0 |a EPIDEMIC SPREADING 
690 1 0 |a HUMAN MOBILITY 
690 1 0 |a HUMAN POPULATION 
690 1 0 |a LOW TEMPERATURES 
690 1 0 |a MOBILITY PATTERN 
690 1 0 |a SPATIO-TEMPORAL DYNAMICS 
690 1 0 |a VECTOR-BORNE DISEASE 
690 1 0 |a STOCHASTIC MODELS 
700 1 |a Dorso, Claudio Oscar 
700 1 |a Otero, M. 
773 0 |d Elsevier B.V., 2016  |g v. 447  |h pp. 129-140  |p Phys A Stat Mech Appl  |x 03784371  |w (AR-BaUEN)CENRE-280  |t Physica A: Statistical Mechanics and its Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84952802333&doi=10.1016%2fj.physa.2015.12.015&partnerID=40&md5=0efe414c8e47755f896d6c7d3a342e48  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.physa.2015.12.015  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03784371_v447_n_p129_Barmak  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v447_n_p129_Barmak  |y Registro en la Biblioteca Digital 
961 |a paper_03784371_v447_n_p129_Barmak  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 77025