The first nontrivial eigenvalue for a system of p-Laplacians with Neumann and Dirichlet boundary conditions

We deal with the first eigenvalue for a system of two p-Laplacians with Dirichlet and Neumann boundary conditions. If Δpw = div (|∇w|p-2∇w) stands for the p-Laplacian and α/p + β/q = 1, we consider (Formula presented.) with mixed boundary conditions (Formula presented.) We show that there is a first...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Del Pezzo, L.M
Otros Autores: Rossi, J.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08850caa a22009017a 4500
001 PAPER-16017
003 AR-BaUEN
005 20230518204653.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84951800340 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NOAND 
100 1 |a Del Pezzo, L.M. 
245 1 4 |a The first nontrivial eigenvalue for a system of p-Laplacians with Neumann and Dirichlet boundary conditions 
260 |b Elsevier Ltd  |c 2016 
270 1 0 |m Rossi, J.D.; CONICET, Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Pabellon i, Ciudad UniversitariaArgentina; email: jrossi@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Aronsson, G., Crandall, M.G., Juutinen, P., A tour of the theory of absolutely minimizing functions (2004) Bull. Amer. Math. Soc., 41, pp. 439-505 
504 |a Barles, G., Fully nonlinear Neumann type conditions for second-order elliptic and parabolic equations (1993) J. Differential Equations, 106, pp. 90-106 
504 |a Bhattacharya, T., Di Benedetto, E., Manfredi, J., Limits as p → ∞ of Δpup,q=f and related extremal problems (1991) Rend. Semin. Mat. Univ. Politec. Torino, pp. 15-68 
504 |a Boccardo, L., De Figueiredo, D.G., Some remarks on a system of quasilinear elliptic equations (2002) Nonlinear Differential Equations Appl., 9, pp. 309-323 
504 |a De Napoli, P.L., Pinasco, J.P., Estimates for eigenvalues of quasilinear elliptic systems (2006) J. Differential Equations, 227, pp. 102-115 
504 |a DiBenedetto, E., (1993) Degenerate Parabolic Equations, pp. xvi and 387. , Universitext Springer-Verlag New York 
504 |a Bonforte, M., Iagar, R., Vazquez, J.L., Local smoothing effects, positivity, and Harnack inequalities for the fast p-Laplacian equation (2010) Adv. Math., 224 (5), pp. 2151-2215 
504 |a D. Bonheure, J.D. Rossi, N. Saintier, The limit as p → ∞ in the eigenvalue problem for a system of p-Laplacians, Preprint; Caselles, V., Morel, J.M., Sbert, C., An axiomatic approach to image interpolation (1998) IEEE Trans. Image Process., 7, pp. 376-386 
504 |a Chambolle, A., Lindgren, E., Monneau, R., A Holder infinity Laplacian (2012) ESAIM Control Optim. Calc. Var., 18 (3), pp. 799-835 
504 |a Crandall, M.G., Ishii, H., Lions, P.L., User's guide to viscosity solutions of second order partial differential equations (1992) Bull. Amer. Math. Soc., 27, pp. 1-67 
504 |a Del Pezzo, L.M., Rossi, J.D., Saintier, N., Salort, A., An optimal mass transport approach for limits of eigenvalue problems for the fractional p-Laplacian (2015) Adv. Nonlinear Anal., 4 (3), pp. 235-249 
504 |a Del Pezzo, L.M., Salort, A.M., The first non-zero Neumann p-fractional eigenvalue (2015) Nonlinear Anal., 118, pp. 130-143 
504 |a Esposito, L., Kawohl, B., Nitsch, C., Trombetti, C., The Neumann eigenvalue problem for the ∞-Laplacian (2015) Rend. Lincei Mat. Appl., 26, pp. 119-134 
504 |a Garcia-Azorero, J., Manfredi, J.J., Peral, I., Rossi, J.D., Steklov eigenvlue for the ∞-Laplacian (2006) Rend. Lincei Mat. Appl., 17 (3), pp. 199-210 
504 |a García-Azorero, J., Manfredi, J.J., Peral, I., Rossi, J.D., The Neumann problem for the ∞-Laplacian and the Monge-Kantorovich mass transfer problem (2007) Nonlinear Anal., 66, pp. 349-366 
504 |a Iagar, R., Vazquez, J.L., Asymptotic analysis for the p-Laplacian evolution equation in an exterior domain (I) (2009) Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2), pp. 497-520 
504 |a Iagar, R., Vazquez, J.L., Asymptotic analysis for the p-Laplacian evolution equation in an exterior domain. the low dimension case (2010) J. Eur. Math. Soc. (JEMS), 12 (1), pp. 249-277 
504 |a Juutinen, P., Lindqvist, P., On the higher eigenvalues for the ∞-eigenvalue problem (2005) Calc. Var. Partial Differential Equations, 23 (2), pp. 169-192 
504 |a Juutinen, P., Lindqvist, P., Manfredi, J.J., The ∞-eigenvalue problem (1999) Arch. Ration. Mech. Anal., 148, pp. 89-105 
504 |a Juutinen, P., Lindqvist, P., Manfredi, J.J., On the equivalence of viscosity solutions and weak solutions for a quasilinear equation (2001) SIAM J. Math. Anal., 33 (3), pp. 699-717 
504 |a Krugel, F., Potential theory for the sum of the 1-Laplacian and p-Laplacian (2015) Nonlinear Anal., 112, pp. 165-180 
504 |a Lindgren, E., Lindqvist, P., Fractional eigenvalues (2014) Calc. Var. Partial Differential Equations, 49 (1-2), pp. 795-826 
504 |a Lindqvist, P., (2006) Notes on the P-Laplace Equation, 102, pp. ii and 80. , Report. University of Jyvaskyla, Department of Mathematics and Statistics, University of Jyvaskyla, Finland 
504 |a Manasevich, R., Mawhin, J., The spectrum of p-Laplacian systems with various boundary conditions and applications (2000) Adv. Differential Equations, 5 (10-12), pp. 1289-1318 
504 |a Manfredi, J.J., Rossi, J.D., Urbano, J.M., P(x)-Harmonic functions with unbounded exponent in a subdomain (2009) Ann. Inst. H. Poincaré C. Anal. Non Linéaire, 26 (6), pp. 2581-2595 
504 |a Perera, K., Squassina, M., Marco, Yang, Y., A note on the Dancer-Fučík spectra of the fractional p-Laplacian and Laplacian operators (2015) Adv. Nonlinear Anal., 4 (1), pp. 13-23 
504 |a Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B., Tug-of-war and the infinity Laplacian (2009) J. Amer. Math. Soc., 22, pp. 167-210 
504 |a Peres, Y., Sheffield, S., Tug-of-war with noise: A game theoretic view of the p-Laplacian (2008) Duke Math. J., 145, pp. 91-120 
504 |a Rossi, J.D., Saintier, N., On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions Houston J. Math., , in press 
504 |a Vazquez, J.L., A strong maximum principle for some quasilinear elliptic equations (1984) Appl. Math. Optim., 12 (3), pp. 191-202 
504 |a Zographopoulos, N., P-Laplacian systems at resonance (2004) Appl. Anal., 83 (5), pp. 509-519 
520 3 |a We deal with the first eigenvalue for a system of two p-Laplacians with Dirichlet and Neumann boundary conditions. If Δpw = div (|∇w|p-2∇w) stands for the p-Laplacian and α/p + β/q = 1, we consider (Formula presented.) with mixed boundary conditions (Formula presented.) We show that there is a first non trivial eigenvalue that can be characterized by the variational minimization problem (Formula presented.), where (Formula presented.). We also study the limit of λ α,β p,q, as q,p → ∞ assuming that α/p → F ∈ (0, 1), and q/p → Q ∈ (0, ∞) as p,q → ∞. We find that this limit problem interpolates between the pure Dirichlet and Neumann cases for a single equation when we take Q = 1 and the limits F → 1 and F → 0. © 2015 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, MTM   2011-27998, PIP 5478/1438 
536 |a Detalles de la financiación: Leandro M. Del Pezzo was partially supported by CONICET   PIP 5478/1438 (Argentina) and Julio D. Rossi was partially supported by MTM   2011-27998 , (Spain). 
593 |a CONICET, Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon i, Buenos Aires, 1428, Argentina 
690 1 0 |a EIGENVALUES 
690 1 0 |a P-LAPLACIAN 
690 1 0 |a SYSTEMS 
690 1 0 |a COMPUTER SYSTEMS 
690 1 0 |a EIGENVALUES AND EIGENFUNCTIONS 
690 1 0 |a LAPLACE EQUATION 
690 1 0 |a LAPLACE TRANSFORMS 
690 1 0 |a DIRICHLET AND NEUMANN BOUNDARY CONDITIONS 
690 1 0 |a EIGENVALUES 
690 1 0 |a LIMIT PROBLEM 
690 1 0 |a MINIMIZATION PROBLEMS 
690 1 0 |a MIXED BOUNDARY CONDITION 
690 1 0 |a NEUMANN AND DIRICHLET BOUNDARY CONDITIONS 
690 1 0 |a P-LAPLACIAN 
690 1 0 |a SINGLE EQUATION 
690 1 0 |a BOUNDARY CONDITIONS 
700 1 |a Rossi, J.D. 
773 0 |d Elsevier Ltd, 2016  |g v. 137  |h pp. 381-401  |p Nonlinear Anal Theory Methods Appl  |x 0362546X  |w (AR-BaUEN)CENRE-254  |t Nonlinear Analysis, Theory, Methods and Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84951800340&doi=10.1016%2fj.na.2015.09.019&partnerID=40&md5=9858ed86258135f45b114b8729c60161  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.na.2015.09.019  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0362546X_v137_n_p381_DelPezzo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v137_n_p381_DelPezzo  |y Registro en la Biblioteca Digital 
961 |a paper_0362546X_v137_n_p381_DelPezzo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 76970