The first nontrivial eigenvalue for a system of p-Laplacians with Neumann and Dirichlet boundary conditions
We deal with the first eigenvalue for a system of two p-Laplacians with Dirichlet and Neumann boundary conditions. If Δpw = div (|∇w|p-2∇w) stands for the p-Laplacian and α/p + β/q = 1, we consider (Formula presented.) with mixed boundary conditions (Formula presented.) We show that there is a first...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier Ltd
2016
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 08850caa a22009017a 4500 | ||
|---|---|---|---|
| 001 | PAPER-16017 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204653.0 | ||
| 008 | 190411s2016 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84951800340 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a NOAND | ||
| 100 | 1 | |a Del Pezzo, L.M. | |
| 245 | 1 | 4 | |a The first nontrivial eigenvalue for a system of p-Laplacians with Neumann and Dirichlet boundary conditions |
| 260 | |b Elsevier Ltd |c 2016 | ||
| 270 | 1 | 0 | |m Rossi, J.D.; CONICET, Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Pabellon i, Ciudad UniversitariaArgentina; email: jrossi@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Aronsson, G., Crandall, M.G., Juutinen, P., A tour of the theory of absolutely minimizing functions (2004) Bull. Amer. Math. Soc., 41, pp. 439-505 | ||
| 504 | |a Barles, G., Fully nonlinear Neumann type conditions for second-order elliptic and parabolic equations (1993) J. Differential Equations, 106, pp. 90-106 | ||
| 504 | |a Bhattacharya, T., Di Benedetto, E., Manfredi, J., Limits as p → ∞ of Δpup,q=f and related extremal problems (1991) Rend. Semin. Mat. Univ. Politec. Torino, pp. 15-68 | ||
| 504 | |a Boccardo, L., De Figueiredo, D.G., Some remarks on a system of quasilinear elliptic equations (2002) Nonlinear Differential Equations Appl., 9, pp. 309-323 | ||
| 504 | |a De Napoli, P.L., Pinasco, J.P., Estimates for eigenvalues of quasilinear elliptic systems (2006) J. Differential Equations, 227, pp. 102-115 | ||
| 504 | |a DiBenedetto, E., (1993) Degenerate Parabolic Equations, pp. xvi and 387. , Universitext Springer-Verlag New York | ||
| 504 | |a Bonforte, M., Iagar, R., Vazquez, J.L., Local smoothing effects, positivity, and Harnack inequalities for the fast p-Laplacian equation (2010) Adv. Math., 224 (5), pp. 2151-2215 | ||
| 504 | |a D. Bonheure, J.D. Rossi, N. Saintier, The limit as p → ∞ in the eigenvalue problem for a system of p-Laplacians, Preprint; Caselles, V., Morel, J.M., Sbert, C., An axiomatic approach to image interpolation (1998) IEEE Trans. Image Process., 7, pp. 376-386 | ||
| 504 | |a Chambolle, A., Lindgren, E., Monneau, R., A Holder infinity Laplacian (2012) ESAIM Control Optim. Calc. Var., 18 (3), pp. 799-835 | ||
| 504 | |a Crandall, M.G., Ishii, H., Lions, P.L., User's guide to viscosity solutions of second order partial differential equations (1992) Bull. Amer. Math. Soc., 27, pp. 1-67 | ||
| 504 | |a Del Pezzo, L.M., Rossi, J.D., Saintier, N., Salort, A., An optimal mass transport approach for limits of eigenvalue problems for the fractional p-Laplacian (2015) Adv. Nonlinear Anal., 4 (3), pp. 235-249 | ||
| 504 | |a Del Pezzo, L.M., Salort, A.M., The first non-zero Neumann p-fractional eigenvalue (2015) Nonlinear Anal., 118, pp. 130-143 | ||
| 504 | |a Esposito, L., Kawohl, B., Nitsch, C., Trombetti, C., The Neumann eigenvalue problem for the ∞-Laplacian (2015) Rend. Lincei Mat. Appl., 26, pp. 119-134 | ||
| 504 | |a Garcia-Azorero, J., Manfredi, J.J., Peral, I., Rossi, J.D., Steklov eigenvlue for the ∞-Laplacian (2006) Rend. Lincei Mat. Appl., 17 (3), pp. 199-210 | ||
| 504 | |a García-Azorero, J., Manfredi, J.J., Peral, I., Rossi, J.D., The Neumann problem for the ∞-Laplacian and the Monge-Kantorovich mass transfer problem (2007) Nonlinear Anal., 66, pp. 349-366 | ||
| 504 | |a Iagar, R., Vazquez, J.L., Asymptotic analysis for the p-Laplacian evolution equation in an exterior domain (I) (2009) Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2), pp. 497-520 | ||
| 504 | |a Iagar, R., Vazquez, J.L., Asymptotic analysis for the p-Laplacian evolution equation in an exterior domain. the low dimension case (2010) J. Eur. Math. Soc. (JEMS), 12 (1), pp. 249-277 | ||
| 504 | |a Juutinen, P., Lindqvist, P., On the higher eigenvalues for the ∞-eigenvalue problem (2005) Calc. Var. Partial Differential Equations, 23 (2), pp. 169-192 | ||
| 504 | |a Juutinen, P., Lindqvist, P., Manfredi, J.J., The ∞-eigenvalue problem (1999) Arch. Ration. Mech. Anal., 148, pp. 89-105 | ||
| 504 | |a Juutinen, P., Lindqvist, P., Manfredi, J.J., On the equivalence of viscosity solutions and weak solutions for a quasilinear equation (2001) SIAM J. Math. Anal., 33 (3), pp. 699-717 | ||
| 504 | |a Krugel, F., Potential theory for the sum of the 1-Laplacian and p-Laplacian (2015) Nonlinear Anal., 112, pp. 165-180 | ||
| 504 | |a Lindgren, E., Lindqvist, P., Fractional eigenvalues (2014) Calc. Var. Partial Differential Equations, 49 (1-2), pp. 795-826 | ||
| 504 | |a Lindqvist, P., (2006) Notes on the P-Laplace Equation, 102, pp. ii and 80. , Report. University of Jyvaskyla, Department of Mathematics and Statistics, University of Jyvaskyla, Finland | ||
| 504 | |a Manasevich, R., Mawhin, J., The spectrum of p-Laplacian systems with various boundary conditions and applications (2000) Adv. Differential Equations, 5 (10-12), pp. 1289-1318 | ||
| 504 | |a Manfredi, J.J., Rossi, J.D., Urbano, J.M., P(x)-Harmonic functions with unbounded exponent in a subdomain (2009) Ann. Inst. H. Poincaré C. Anal. Non Linéaire, 26 (6), pp. 2581-2595 | ||
| 504 | |a Perera, K., Squassina, M., Marco, Yang, Y., A note on the Dancer-Fučík spectra of the fractional p-Laplacian and Laplacian operators (2015) Adv. Nonlinear Anal., 4 (1), pp. 13-23 | ||
| 504 | |a Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B., Tug-of-war and the infinity Laplacian (2009) J. Amer. Math. Soc., 22, pp. 167-210 | ||
| 504 | |a Peres, Y., Sheffield, S., Tug-of-war with noise: A game theoretic view of the p-Laplacian (2008) Duke Math. J., 145, pp. 91-120 | ||
| 504 | |a Rossi, J.D., Saintier, N., On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions Houston J. Math., , in press | ||
| 504 | |a Vazquez, J.L., A strong maximum principle for some quasilinear elliptic equations (1984) Appl. Math. Optim., 12 (3), pp. 191-202 | ||
| 504 | |a Zographopoulos, N., P-Laplacian systems at resonance (2004) Appl. Anal., 83 (5), pp. 509-519 | ||
| 520 | 3 | |a We deal with the first eigenvalue for a system of two p-Laplacians with Dirichlet and Neumann boundary conditions. If Δpw = div (|∇w|p-2∇w) stands for the p-Laplacian and α/p + β/q = 1, we consider (Formula presented.) with mixed boundary conditions (Formula presented.) We show that there is a first non trivial eigenvalue that can be characterized by the variational minimization problem (Formula presented.), where (Formula presented.). We also study the limit of λ α,β p,q, as q,p → ∞ assuming that α/p → F ∈ (0, 1), and q/p → Q ∈ (0, ∞) as p,q → ∞. We find that this limit problem interpolates between the pure Dirichlet and Neumann cases for a single equation when we take Q = 1 and the limits F → 1 and F → 0. © 2015 Elsevier Ltd. All rights reserved. |l eng | |
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, MTM 2011-27998, PIP 5478/1438 | ||
| 536 | |a Detalles de la financiación: Leandro M. Del Pezzo was partially supported by CONICET PIP 5478/1438 (Argentina) and Julio D. Rossi was partially supported by MTM 2011-27998 , (Spain). | ||
| 593 | |a CONICET, Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon i, Buenos Aires, 1428, Argentina | ||
| 690 | 1 | 0 | |a EIGENVALUES |
| 690 | 1 | 0 | |a P-LAPLACIAN |
| 690 | 1 | 0 | |a SYSTEMS |
| 690 | 1 | 0 | |a COMPUTER SYSTEMS |
| 690 | 1 | 0 | |a EIGENVALUES AND EIGENFUNCTIONS |
| 690 | 1 | 0 | |a LAPLACE EQUATION |
| 690 | 1 | 0 | |a LAPLACE TRANSFORMS |
| 690 | 1 | 0 | |a DIRICHLET AND NEUMANN BOUNDARY CONDITIONS |
| 690 | 1 | 0 | |a EIGENVALUES |
| 690 | 1 | 0 | |a LIMIT PROBLEM |
| 690 | 1 | 0 | |a MINIMIZATION PROBLEMS |
| 690 | 1 | 0 | |a MIXED BOUNDARY CONDITION |
| 690 | 1 | 0 | |a NEUMANN AND DIRICHLET BOUNDARY CONDITIONS |
| 690 | 1 | 0 | |a P-LAPLACIAN |
| 690 | 1 | 0 | |a SINGLE EQUATION |
| 690 | 1 | 0 | |a BOUNDARY CONDITIONS |
| 700 | 1 | |a Rossi, J.D. | |
| 773 | 0 | |d Elsevier Ltd, 2016 |g v. 137 |h pp. 381-401 |p Nonlinear Anal Theory Methods Appl |x 0362546X |w (AR-BaUEN)CENRE-254 |t Nonlinear Analysis, Theory, Methods and Applications | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84951800340&doi=10.1016%2fj.na.2015.09.019&partnerID=40&md5=9858ed86258135f45b114b8729c60161 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.na.2015.09.019 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_0362546X_v137_n_p381_DelPezzo |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v137_n_p381_DelPezzo |y Registro en la Biblioteca Digital |
| 961 | |a paper_0362546X_v137_n_p381_DelPezzo |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 76970 | ||