Discrete Event Modeling and Simulation-Driven Engineering for the ATLAS Data Acquisition Network

The authors present an iterative and incremental development methodology for simulation models in network engineering projects. Driven by the DEVS (Discrete Event Systems Specification) formal framework for modeling and simulation, they aim to assist network design, test, analysis, and optimization...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bonaventura, M.
Otros Autores: Foguelman, D., Castro, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: IEEE Computer Society 2016
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07516caa a22009737a 4500
001 PAPER-16012
003 AR-BaUEN
005 20230518204652.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84973358552 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CSENF 
100 1 |a Bonaventura, M. 
245 1 0 |a Discrete Event Modeling and Simulation-Driven Engineering for the ATLAS Data Acquisition Network 
260 |b IEEE Computer Society  |c 2016 
506 |2 openaire  |e Política editorial 
504 |a Zeigler, B.P., (1976) Theory of Modeling and Simulation, , John Wiley & Sons 
504 |a Chow, A.C.H., Zeigler, B.P., Parallel DEVS: A parallel, hierarchical, modular, modeling formalism (1994) Proc. 26th Conf. Winter Simulation, pp. 716-722 
504 |a Zeigler, B.P., Praehofer, H., Kim, T.G., (2000) Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems, , Academic Press 
504 |a Wainer, G., (2009) Discrete-Event Modeling and Simulation: A Practitioner's Approach, , CRC Press 
504 |a Wainer, G., Mosterman, J., (2010) Discrete-Event Modeling and Simulation: Theory and Applications, , CRC Press 
504 |a Collaboration, A., The ATLAS experiment at the CERN large hadron collider (2008) J. Instrumentation, 3 (8), p. S08003 
504 |a Pestre, D., L'organisation Européenne pour la Recherche Nucléaire (CERN): A Succès et Politique Scientifique (1984) Vingtieme Siecle, Revue D'Histoire, pp. 65-76. , JSTOR 
504 |a Evans, L., Bryant, P., LHC machine (2008) J. Instrumentation, 3 (8), p. S08001 
504 |a The CMS experiment at the CERN LHC (2008) J. Instrumentation, 3 (4). , 1748-221 
504 |a Aamodt, K., The ALICE experiment at the CERN LHC (2008) J. Instrumentation, 3 (8), p. S08002 
504 |a Alves, A.A., Jr., The LHCb detector at the LHC (2008) J. Instrumentation, 3 (8), pp. 1-205 
504 |a (2003) ATLAS High-Level Trigger, Data-Acquisition and Controls, , tech. report, CERN-LHCC-2003-022, ATLAS-TDR-016, CERN 
504 |a Bergero, F., Kofman, E., A vectorial DEVS extension for large scale parallel system modeling and simulation (2014) Simulation, 90 (5), pp. 522-546 
504 |a Bergero, F., Kofman, E., PowerDEVS: A tool for hybrid system real-time modeling and simulation (2011) Simulation, 87 (1-2), pp. 113-132 
504 |a Castro, R., (2010) Integrative Tools for Modeling, Simulation and Control of Data Networks, , (in Spanish, extended summary in English), PhD dissertation, Control Dept., Nat'l Univ. Rosario, Argentina 
504 |a Castro, R., Kofman, E., An integrative approach for hybrid modeling, simulation and control of data networks based on the DEVS formalism (2015) Modeling and Simulation of Computer Networks and Systems: Methodologies and Applications, , M.S. Obaidat, Z. Faouzi, and P. Nicopolitidis, eds., Morgan Kaufmann chapter 18 
504 |a Issariyakul, T., Hossain, E., (2008) Introduction to Network Simulator NS2, , Springer 
504 |a Chang, X., Network with OPNET simulations (1999) Proc. 31st Conf. Winter Simulation, pp. 307-314 
504 |a Suárez, J., Computer networks performance modeling and simulation (2015) Modeling and Simulation of Computer Networks and Systems: Methodologies and Applications, , M.S. Obaidat et al., eds., Morgan Kaufmann ch. 7 
504 |a Colombo, T., Modeling a Large Data-Acquisition Network in a Simulation Framework (2015) Proc. Cluster Computing Conf., pp. 809-816 
504 |a Burbank, J.L., Kasch, W., Ward, J., (2011) An Introduction to Network Modeling and Simulation for the Practicing Engineer, , John Wiley & Sons 
504 |a Cellier, F., Kofman, E., (2006) Continuous System Simulation, , Springer Science & Business Media 
504 |a Gonçalves, B., Porto, F., Managing Scientifi c Hypotheses as Data with Support for Predictive Analytics (2015) Computing in Science & Eng., 17 (5), pp. 35-43 
504 |a Kulkarni, S., Agrawal, P., (2014) Analysis of TCP Performance in Data Center Networks, , Springer 
504 |a Colombo, T., Data-flow performance optimisation on unreliable networks: The atlas data-acquisition case (2015) J. Physics: Conf. Series, 608 (1), p. 012005 
504 |a Ha, S., Rhee, I., Xu, L., CUBIC: A new TCP-friendly high-speed TCP variant (2008) ACM SIGOPS Operating Systems Rev., 42 (5), pp. 64-74 
504 |a Antcheva, I., ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization (2011) Computer Physics Comm., 182 (12), pp. 2499-2512 
504 |a Pozo Astigarraga, M.E., Evolution of the ATLAS trigger and data acquisition system (2015) J. Physics: Conf. Series, 608 (1), p. 012006 
520 3 |a The authors present an iterative and incremental development methodology for simulation models in network engineering projects. Driven by the DEVS (Discrete Event Systems Specification) formal framework for modeling and simulation, they aim to assist network design, test, analysis, and optimization processes. A practical application of the methodology is presented for a case study in the data acquisition system of the ATLAS particle physics experiment at CERN's Large Hadron Collider at CERN. By adopting the DEVS M&S formal framework in combination with software engineering best practices, the authors develop network simulation models along with enhanced modeling capabilities and boosted simulation performance for tools in a robust yet flexible way. © 2016 IEEE.  |l eng 
593 |a Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
690 1 0 |a BEST PRACTICES 
690 1 0 |a BUILD 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a DESIGN 
690 1 0 |a LHC 
690 1 0 |a SCIENTIFIC COMPUTING 
690 1 0 |a SOFTWARE ENGINEERING 
690 1 0 |a TEST 
690 1 0 |a COLLIDING BEAM ACCELERATORS 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a COMPUTER SOFTWARE 
690 1 0 |a DATA ACQUISITION 
690 1 0 |a DESIGN 
690 1 0 |a ITERATIVE METHODS 
690 1 0 |a NATURAL SCIENCES COMPUTING 
690 1 0 |a SOFTWARE ENGINEERING 
690 1 0 |a SOFTWARE TESTING 
690 1 0 |a TESTING 
690 1 0 |a BEST PRACTICES 
690 1 0 |a BUILD 
690 1 0 |a DATA ACQUISITION NETWORKS 
690 1 0 |a DISCRETE EVENT SYSTEMS SPECIFICATIONS 
690 1 0 |a ENGINEERING BEST PRACTICE 
690 1 0 |a ITERATIVE AND INCREMENTAL DEVELOPMENT 
690 1 0 |a PARTICLE PHYSICS EXPERIMENTS 
690 1 0 |a DISCRETE EVENT SIMULATION 
650 1 7 |2 spines  |a CERN 
650 1 7 |2 spines  |a CERN 
700 1 |a Foguelman, D. 
700 1 |a Castro, R. 
773 0 |d IEEE Computer Society, 2016  |g v. 18  |h pp. 70-83  |k n. 3  |p Comput. Sci. Eng.  |x 15219615  |w (AR-BaUEN)CENRE-1789  |t Computing in Science and Engineering 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84973358552&doi=10.1109%2fMCSE.2016.58&partnerID=40&md5=599776a6646cebb17aeb161b325978b8  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1109/MCSE.2016.58  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15219615_v18_n3_p70_Bonaventura  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15219615_v18_n3_p70_Bonaventura  |y Registro en la Biblioteca Digital 
961 |a paper_15219615_v18_n3_p70_Bonaventura  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76965