Method based on the double sideband technique for the dynamic tracking of micrometric particles

Digital holography (DH) methods are of interest in a large number of applications. Recently, the double sideband (DSB) technique was proposed, which is a DH based method that, by using double filtering, provides reconstructed images without distortions and is free of twin images by using an in-line...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ramirez, C.
Otros Autores: Lizana, A., Iemmi, Claudio César, Campos, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Institute of Physics Publishing 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08693caa a22009017a 4500
001 PAPER-15976
003 AR-BaUEN
005 20250513095355.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84976435910 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Ramirez, C. 
245 1 0 |a Method based on the double sideband technique for the dynamic tracking of micrometric particles 
260 |b Institute of Physics Publishing  |c 2016 
504 |a Carl, D., Kemper, B., Wernicke, G., Bally, G.V., Parameter-optimized digital holographic microscope for high-resolution living-cell analysis (2004) Appl. Opt., 43, pp. 6536-6544. , 6536-44 
504 |a Proll, K.P., Nivet, J.M., Körner, K., Tiziani, H.J., Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays (2003) Appl. Opt., 42, pp. 1773-1778. , 1773-8 
504 |a Khare, K., Ali, P.T.S., Joseph, J., Single shot high resolution digital holography (2013) Opt. Express, 21, pp. 2581-2591. , 2581-91 
504 |a Gabor, D., A new microscopic principle (1948) Nature, 4098, pp. 777-778. , 777-8 
504 |a Moon, I., DaneshPanah, M., Javidi, B., Stern, A., Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy (2009) Proc. IEEE, 97, pp. 990-1010. , 990-1010 
504 |a DaneshPanah, M., Javidi, B., Tracking biological microorganisms in sequence of 3D holographic microscopy images (2007) Opt. Express, 15, pp. 10761-10766. , 10761-6 
504 |a Tajahuerce, E., Matoba, O., Javidi, B., Shift-invariant three-dimensional object recognition by means of digital holography (2001) Appl. Opt., 40, pp. 3877-3886. , 3877-86 
504 |a Javidi, B., Tajahuerce, E., Three-dimensional object recognition by use of digital holography (2000) Opt. Lett., 25, pp. 610-612. , 610-2 
504 |a Moon, I., Javidi, B., Three-dimensional identification of stem cells by computational holographic imaging (2006) J. R. Soc. Interface, 4, pp. 305-313. , 305-13 
504 |a Yeom, S., Moon, I., Javidi, B., Real-time 3D sensing, visualization and recognition of dynamic biological microorganisms (2006) Proc. IEEE, 94, pp. 550-566. , 550-66 
504 |a Shin, D., Daneshpanah, M., Anand, A., Javidi, B., Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy (2010) Opt. Lett., 35, pp. 4066-4068. , 4066-8 
504 |a Javidi, B., Moon, I., Yeom, S., Carapezza, E., Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography (2005) Opt. Express, 13, pp. 4492-4506. , 4492-506 
504 |a Leith, E.N., Upatnieks, J., Reconstructed wavefronts and communication theory (1962) J. Opt. Soc. Am., 52, pp. 1123-1130. , 1123-30 
504 |a Leith, E.N., Upatnieks, J., Haines, K.A., Microscopy by wavefront reconstruction (1965) J. Opt. Soc. Am., 55 (8), pp. 981-986. , 981-6 
504 |a Yamaguchi, I., Zhang, T., Phase-shifting digital holography (1997) Opt. Lett., 22, pp. 1268-1270. , 1268-70 
504 |a Bryngdahl, O., Lohmann, A., Single-sideband holography (1968) J. Opt. Soc. Am., 58, pp. 620-624. , 620-4 
504 |a Ramirez, C., Lizana, A., Iemmi, C., Campos, J., Inline digital holographic movie based on a double-sideband filter (2015) Opt. Lett., 40, pp. 4142-4145. , 4142-5 
504 |a Yu, X., Hong, J., Liu, C., Kim, M.K., Review of digital holographic microscopy for three-dimensional profiling and tracking (2014) Opt. Eng., 53 
504 |a Tamura, H., Mori, S., Yamawaki, T., Textural features corresponding to visual perception (1978) IEEE Trans. Syst. Man Cybern., 8, pp. 460-473. , 460-73 
504 |a Thum, C., Measurement of the entropy of an image with application to image focusing (1984) Opt. Acta, 31, pp. 203-211. , 203-11 
504 |a Gillespie, J., King, R.A., The use of self-entropy as a focus measure in digital holography (1989) Pattern Recognit. Lett., 9, pp. 19-25. , 19-25 
504 |a Zonoobi, D., Kassim, A.A., Venkatesh, Y.V., Gini index as sparsity measure for signal reconstruction from compressive samples (2011) IEEE J. Sel. Top. Signal Process., 5, pp. 927-932. , 927-32 
504 |a Dubois, F., Schockaert, C., Callens, N., Yourassowsky, C., Focus plane detection criteria in digital holography microscopy by amplitude analysis (2006) Opt. Express, 14, pp. 5895-5908. , 5895-908 
504 |a Lizana, A., Marquez, A., Lobato, L., Rodange, Y., Moreno, I., Iemmi, C., Campos, J., The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators (2010) Opt. Express, 18, pp. 10581-10593. , 10581-93 
504 |a Pedrini, G., Osten, W., Zhang, Y., Wave-front reconstruction from a sequence of interferograms recorded at different planes (2005) Opt. Lett., 30, pp. 833-835. , 833-5 
504 |a Latychevskaia, T., Fink, H.W., Holographic time-resolved particle tracking by means of three-dimensional volumetric deconvolution (2014) Opt. Express, 22, pp. 20994-21003. , 20994-1003 
504 |a Qi, Y.L., A relevance feedback retrieval method based on Tamura texture (2009) Proc. IEEE, 3, pp. 174-177. , 174-7 
504 |a Memmolo, P., Iannone, M., Ventre, M., Netti, P.A., Finizio, A., Paturzo, M., Ferraro, P., On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change (2012) Opt. Express, 20 
504 |a Memmolo, P., Miccio, L., Paturzo, M., Di Caprio, G., Coppola, G., Netti, P.A., Ferraro, P., Recent advances in holographic 3D particle tracking (2015) Adv. Opt. Photonics, 7, pp. 713-755. , 713-55 
504 |a Memmolo, P., Paturzo, M., Javidi, B., Netti, P.A., Ferraro, P., Refocusing criterion via sparsity measurements in digital holography (2014) Opt. Lett., 39, pp. 4719-4722. , 4719-22 
506 |2 openaire  |e Política editorial 
520 3 |a Digital holography (DH) methods are of interest in a large number of applications. Recently, the double sideband (DSB) technique was proposed, which is a DH based method that, by using double filtering, provides reconstructed images without distortions and is free of twin images by using an in-line configuration. In this work, we implement a method for the investigation of the mobility of particles based on the DSB technique. Particle holographic images obtained using the DSB method are processed with digital picture recognition methods, allowing us to accurately track the spatial position of particles. The dynamic nature of the method is achieved experimentally by using a spatial light modulator. The suitability of the proposed tracking method is validated by determining the trajectory and velocity described by glass microspheres in movement. © 2016 IOP Publishing Ltd.  |l eng 
593 |a Departamento de Física, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain 
593 |a Departamento de Física, FCEyN, Universidad de Buenos Aires CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a DIGITAL HOLOGRAPHY 
690 1 0 |a IMAGE PROCESSING 
690 1 0 |a PATTERN RECOGNITION 
690 1 0 |a SPATIAL LIGHT MODULATORS 
690 1 0 |a TARGET TRACKING 
690 1 0 |a HOLOGRAPHY 
690 1 0 |a LIGHT MODULATION 
690 1 0 |a LIGHT MODULATORS 
690 1 0 |a PATTERN RECOGNITION 
690 1 0 |a TARGET TRACKING 
690 1 0 |a DIGITAL HOLOGRAPHY 
690 1 0 |a GLASS MICROSPHERES 
690 1 0 |a HOLOGRAPHIC IMAGES 
690 1 0 |a IN-LINE CONFIGURATION 
690 1 0 |a MICROMETRIC PARTICLES 
690 1 0 |a RECOGNITION METHODS 
690 1 0 |a RECONSTRUCTED IMAGE 
690 1 0 |a SPATIAL LIGHT MODULATORS 
690 1 0 |a IMAGE PROCESSING 
700 1 |a Lizana, A. 
700 1 |a Iemmi, Claudio César 
700 1 |a Campos, J. 
773 0 |d Institute of Physics Publishing, 2016  |g v. 18  |k n. 6  |p J. Opt.  |x 20408978  |t Journal of Optics (United Kingdom) 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976435910&doi=10.1088%2f2040-8978%2f18%2f6%2f065603&partnerID=40&md5=63893a2acff4260885619253f18cfd2d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1088/2040-8978/18/6/065603  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_20408978_v18_n6_p_Ramirez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20408978_v18_n6_p_Ramirez  |y Registro en la Biblioteca Digital 
961 |a paper_20408978_v18_n6_p_Ramirez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76929