Revisiting direct electron transfer in nanostructured carbon laccase oxygen cathodes

The biocatalytic electroreduction of oxygen has been studied on large surface area graphite and Vulcan® carbon electrodes with adsorbed Trametes trogii laccase. The electrokinetics of the O2 reduction reaction (ORR) was studied at different electrode potentials, O2 partial pressures and concentratio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Adam, C.
Otros Autores: Scodeller, P., Grattieri, M., Villalba, M., Calvo, E.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2016
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 18802caa a22017537a 4500
001 PAPER-15972
003 AR-BaUEN
005 20230518204650.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84957718758 
024 7 |2 cas  |a carbon, 7440-44-0; graphite, 7782-42-5; hydrogen peroxide, 7722-84-1; laccase, 80498-15-3; oxygen, 7782-44-7; Carbon; Enzymes, Immobilized; Graphite; Laccase; Oxygen 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BIOEF 
100 1 |a Adam, C. 
245 1 0 |a Revisiting direct electron transfer in nanostructured carbon laccase oxygen cathodes 
260 |b Elsevier B.V.  |c 2016 
270 1 0 |m Calvo, E.J.; INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina 
506 |2 openaire  |e Política editorial 
504 |a Xu, F., Shin, W.S., Brown, S.H., Wahleithner, J.A., Sundaram, U.M., Solomon, E.I., A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability (1996) Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1292, pp. 303-311 
504 |a Gallaway, J.W., Barton, S.A.C., Kinetics of redox polymer-mediated enzyme electrodes (2008) J. Am. Chem. Soc., 130, pp. 8527-8536 
504 |a Mano, N., Soukharev, V., Heller, A., A laccase-wiring redox hydrogel for efficient catalysis of O-2 electroreduction (2006) J. Phys. Chem. B, 110, pp. 11180-11187 
504 |a Scodeller, P., Carballo, R., Szamocki, R., Levin, L., Forchiassin, F., Calvo, E.J., Layer-by-layer self assembled osmium polymer mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide (2010) J. Am. Chem. Soc., 132, pp. 11132-11140 
504 |a Blanford, C.F., Heath, R.S., Armstrong, F.A., A stable electrode for high-potential, electrocatalytic O-2 reduction based on rational attachment of a blue copper oxidase to a graphite surface (2007) Chem. Commun., pp. 1710-1712 
504 |a Blanford, C.F., Heath, R.S., Armstrong, F.A., Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons (2008) Faraday Discussion 140: Electocatalysis - Theory and Experiment at the Interface, , Royal Society of Chemistry, Southampton, UK, A. Russell (Ed.) 
504 |a Parimi, N.S., Umasankar, Y., Atanassov, P., Ramasamy, R.P., Kinetic and mechanistic parameters of laccase catalyzed direct electrochemical oxygen reduction reaction (2012) ACS Catal., 2, pp. 38-44 
504 |a Sosna, M., Chretien, J.-M., Kilburn, J.D., Bartlett, P.N., Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation (2010) Phys. Chem. Chem. Phys., 12, pp. 10018-10026 
504 |a Solomon, E.I., Baldwin, M.J., Lowery, M.D., Electronic-structures of active-sites in copper proteins - contributions to reactivity (1992) Chem. Rev., 92, pp. 521-542 
504 |a Solomon, E.I., Sundaram, U.M., Machonkin, T.E., Multicopper oxidases and oxygenases (1996) Chem. Rev., 96, pp. 2563-2605 
504 |a Chen, T., Barton, S.C., Binyamin, G., Gao, Z.Q., Zhang, Y.C., Kim, H.H., Heller, A., A miniature biofuel cell (2001) J. Am. Chem. Soc., 123, pp. 8630-8631 
504 |a Palmore, G.T.R., Kim, H.H., Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell (1999) J. Electroanal. Chem., 464, pp. 110-117 
504 |a Tarasevich, M.R., Bogdanovskaya, V.A., Kuznetsova, L.N., Bioelectrocatalytic reduction of oxygen in the presence of laccase adsorbed on carbon electrodes (2001) Russ. J. Electrochem., 37, pp. 833-837 
504 |a Tarasevich, M.R., Yaropolov, A.I., Bogdanovskaya, V.A., Varfolomeev, S.D., Electrocatalysis of a cathodic oxygen reduction by laccase (1979) Bioelectrochem. Bioenerg., 6, pp. 393-403 
504 |a Berezin, I.V., Bogdanovskaya, V.A., Varfolomeev, S.D., Tarasevich, M.R., Yaropolov, A.I., Equilibrium oxygen potential in the preswence of laccase (1978) Dokl. Akad. Nauk SSR, 240 (3), pp. 615-618 
504 |a Thorum, M.S., Anderson, C.A., Hatch, J.J., Campbell, A.S., Marshall, N.M., Zimmerman, S.C., Lu, Y., Gewirth, A.A., Direct, electrocatalytic oxygen reduction by laccase on anthracene-2-methanethiol-modified gold (2010) J. Phys. Chem. Lett., 1, pp. 2251-2254 
504 |a Thuesen, M.H., Farver, O., Reinhammar, B., Ulstrup, J., Cyclic voltammetry and electrocatalysis of the blue copper oxidase polyporus versicolor laccase (1998) Acta Chem. Scand., 52, pp. 555-562 
504 |a Vaz-Dominguez, C., Campuzano, S., Rüdiger, O., Pita, M., Gorbacheva, M., Shleev, S., Fernandez, V.M., De Lacey, A.L., Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition (2008) Biosens. Bioelectron., 24, pp. 531-537 
504 |a Blanford, C.F., Foster, C.E., Heath, R.S., Armstrong, F.A., Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons (2008) Faraday Discuss., 140, pp. 319-335 
504 |a Sosna, M., Boer, H., Bartlett, P.N., A his-tagged Melanocarpus albomyces laccase and its electrochemistry upon immobilisation on NTA-modified electrodes and in conducting polymer films (2013) ChemPhysChem, 14, pp. 2225-2231 
504 |a Sosna, M., Chrétien, J.M., Kilburn, J.D., Bartlett, P.N., Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation (2010) Phys. Chem. Chem. Phys., 12, pp. 10018-10026 
504 |a Sosna, M., Stoica, L., Wright, E., Kilburn, J.D., Schuhmann, W., Bartlett, P.N., Mass transport controlled oxygen reduction at anthraquinone modified 3D-CNT electrodes with immobilized Trametes hirsuta laccase (2012) Phys. Chem. Chem. Phys., 14, pp. 11882-11885 
504 |a Armstrong, F.A., Recent developments in dynamic electrochemical studies of adsorbed enzymes and their active sites (2005) Curr. Opin. Chem. Biol., 9, pp. 110-117 
504 |a Dagys, M., Haberska, K., Shleev, S., Arnebrant, T., Kulys, J., Ruzgas, T., Laccase-gold nanoparticle assisted bioelectrocatalytic reduction of oxygen (2010) Electrochem. Commun., 12, pp. 933-935 
504 |a Gutiérrez-Sánchez, C., Pita, M., Vaz-Domínguez, C., Shleev, S., De Lacey, A.L., Gold nanoparticles as electronic bridges for laccase-based biocathodes (2012) J. Am. Chem. Soc., 134, pp. 17212-17220 
504 |a Shen, Y., Trauble, M., Wittstock, G., Electrodeposited noble metal particles in polyelectrolyte multilayer matrix as electrocatalyst for oxygen reduction studied using SECM (2008) Phys. Chem. Chem. Phys., 10, pp. 3635-3644 
504 |a Shleev, S., Christenson, A., Serezhenkov, V., Burbaev, D., Yaropolov, A., Gorton, L., Ruzgas, T., Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode (2005) Biochem. J., 385, pp. 745-754 
504 |a Shleev, S., Jarosz-Wilkolazka, A., Khalunina, A., Morozova, O., Yaropolov, A., Ruzgas, T., Gorton, L., Direct electron transfer reactions of laccases from different origins on carbon electrodes (2005) Bioelectrochemistry, 67, pp. 115-124 
504 |a Shleev, S., Pita, M., Yaropolov, A.I., Ruzgas, T., Gorton, L., Direct heterogeneous electron transfer reactions of Trametes hirsuta laccase at bare and thiol-modified gold electrodes (2006) Electroanalysis, 18, pp. 1901-1908 
504 |a Shleev, S., Shumakovich, G., Morozova, O., Yaropolov, A., Stable 'floating' air diffusion biocathode based on direct electron transfer reactions between carbon particles and high redox potential laccase (2010) Fuel Cells, 10, pp. 726-733 
504 |a Shrier, A., Giroud, F., Rasmussen, M., Minteer, S.D., Operational stability assays for bioelectrodes for biofuel cells: effect of immobilization matrix on laccase biocathode stability (2014) J. Electrochem. Soc., 161, pp. H244-H248 
504 |a Climent, V., Zhang, J., Friis, E.P., Ostergaard, L.H., Ulstrup, J., Voltammetry and single-molecule in situ scanning tunneling microscopy of laccases and bilirubin oxidase in electrocatalytic dioxygen reduction on Au(111) single-crystal electrodes (2012) J. Phys. Chem. C, 116, pp. 1232-1243 
504 |a Szamocki, R., Flexer, V., Levin, L., Forchiasin, F., Calvo, E.J., Oxygen cathode based on a layer-by-layer self-assembled laccase and osmium redox mediator (2009) Electrochim. Acta, 54, pp. 1970-1977 
504 |a Milton, R.D., Giroud, F., Thumser, A.E., Minteer, S.D., Slade, R.C.T., Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement (2013) Phys. Chem. Chem. Phys., 15, pp. 19371-19379 
504 |a Grattieri, M., Scodeller, P., Adam, C., Calvo, E.J., Non-competitive reversible inhibition of laccase by H2O2 in osmium mediated layer-by-layer multilayer O2 biocathodes (2015) J. Electrochem. Soc., 162, pp. G82-G86 
504 |a Milton, R.D., Minteer, S.D., Investigating the reversible inhibition model of laccase by hydrogen peroxide for bioelectrocatalytic applications (2014) J. Electrochem. Soc., 161, pp. H3011-H3014 
504 |a Garzillo, A.M., Colao, M.C., Buonocore, V., Oliva, R., Falcigno, L., Saviano, M., Santoro, A.M., Sannia, G., Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii (2001) Protein J., 20, pp. 191-201 
504 |a Solomon, E.I., Baldwin, M.J., Lowery, M.D., Electronic structures of active sites in copper proteins: contributions to reactivity (1992) Chem. Rev., 92, pp. 521-542 
520 3 |a The biocatalytic electroreduction of oxygen has been studied on large surface area graphite and Vulcan® carbon electrodes with adsorbed Trametes trogii laccase. The electrokinetics of the O2 reduction reaction (ORR) was studied at different electrode potentials, O2 partial pressures and concentrations of hydrogen peroxide.Even though the overpotential at 0.25 mA·cm-2 for the ORR at T1Cu of the adsorbed laccase on carbon is 0.8 V lower than for Pt of similar geometric area, the rate of the reaction and thus the operative current density is limited by the enzyme reaction rate at the T2/T3 cluster site for the adsorbed enzyme. The transition potential for the rate determining step from the direct electron transfer (DET) to the enzyme reaction shifts to higher potentials at higher oxygen partial pressure.Hydrogen peroxide produced by the ORR on bare carbon support participates in an inhibition mechanism, with uncompetitive predominance at high H2O2 concentration, non-competitive contribution can be detected at low inhibitor concentration. © 2016 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, Pict 1452/2012 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Università degli Studi di Milano, UniMi 
536 |a Detalles de la financiación: The authors acknowledge financial support from CONICET , ANPCyT (Pict 1452/2012 ) and the University of Buenos Aires (UBA) . MG acknowledges Università degli Studi di Milano for a Ph.D Student fellowship to visit UBA. Appendix A 
536 |a Detalles de la financiación: Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.bioelechem.2016.01.007 . Catherine Adam is a post-doctoral researcher in the group of Ernesto J. Calvo in INQUIMAE at the University of Buenos Aires. She finished her Ph.D on opto-electrochemical sensors at the University of Bordeaux in 2013 in the group of Analytical Nanosystems (NSysA) with the Pr. Neso Sojic. She got her bachelor and master degrees in Chemistry from the University of Strasbourg. Her research interests focus on physical chemistry particularly in electrochemistry applied to the development of sensors and in the field of energy production. year postdoc. In February of 2015 he joined the Cancer Biology lab led by Dr. Tambet Teesalu, in the University of Tartu, Estonia. Pablo Scodeller , from Argentina, concluded his PhD studies in the University of Buenos Aires under the supervision of Dr. Ernesto Calvo. He went on to work in the ‘Chemistry of Nanomaterials’ group led by Dr. Galo Soler Illia, in Buenos Aires, both with fellowships from the National Research Council (CONICET). In 2013 he joined the ‘Vascular Mapping Laboratory’ of Dr. Erkki Ruoslahti at Sanford-Burnham Medical research Institute, La Jolla, USA for a 2 Matteo Grattieri is a PhD Candidate in Industrial Chemistry and Chemical Engineering at Politecnico di Milano since 2013. His Ph.D. research is focused on enzymatic micro-sensors development and electrochemical study of microbial fuel cells. He got his BS and MS degrees in Chemistry at the University of Milan, focusing on physical chemistry/electrochemistry. He was visiting researcher at the University of Buenos Aires (Argentina) with Prof. Ernesto J. Calvo and at the University of New Mexico, NM (USA) with Prof. Plamen Atanassov. Since 2011 he is working and collaborating with the research groups of Pierangela Cristiani (RSE) and Stefano Trasatti (UNIMI). Matias A. Villalba is a postdoctoral researcher fellow at Arizona State University in the Moore–Moore–Gust group which is focused on artificial photosynthesis. He obtained his Ph.D at the University of Buenos Aires under the supervision of Prof. Ernesto J. Calvo and his thesis dealt with the formation of palladium nanocatalysts within self-assembled multilayer films built via electrostatic and covalent interactions. He got his bachelor degree at the University of Litoral (Argentina) under the supervision of Claudia Adam, working on synthesis of ionic liquids and their properties in the microscale as surfactants. At present, his research interests are sunlight harvesting, photovoltaics devices and energy conversion. Ernesto J. Calvo is Full Professor of Chemistry University of Buenos Aires and Senior Research Fellow of the Argentine Science and Technology Research Council (CONICET). BSc in Chemistry Univ. of Buenos Aires 1975 and PhD from University of La Plata 1979 (Argentina). Posdoctoral fellow at Imperial College, London with Prof. W.J. Albery and B.C.H. Steele (1979–1982) and Senior Research Fellow at CWRU, Cleveland with Prof. E.B. Yeager (1983–1984). Topics of interest: interfacial electrochemistry, nanotechnology, electro-synthesis and lithium batteries. Enesto Calvo has been awarded the John Simon Guggenheim Foundation Award (2000), Konex Foundation Merit Medal (2003, Argentina), Fellow of the Royal Society of Chemistry, 2005 (FRSC), Fellow of IUPAC. He has been elected Vice President of the International Society of Electrochemistry (2009–2011). 
593 |a INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina 
593 |a Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia Ravila 14b, Tartu, 50411, Estonia 
593 |a Department of Chemistry, Materials and Chemical-Engineering, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, Milan, 20133, Italy 
593 |a Center for Bio-energy and Photosynthesis, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, United States 
690 1 0 |a CATALYSIS 
690 1 0 |a INHIBITION 
690 1 0 |a LACCASE 
690 1 0 |a NANOSTRUCTURED CARBON 
690 1 0 |a OXYGEN REDUCTION REACTION (ORR) 
690 1 0 |a CATALYSIS 
690 1 0 |a ELECTRODES 
690 1 0 |a ELECTROHYDRODYNAMICS 
690 1 0 |a ELECTROLYTIC REDUCTION 
690 1 0 |a ELECTROMAGNETIC FIELDS 
690 1 0 |a ELECTRON TRANSITIONS 
690 1 0 |a ENZYME ELECTRODES 
690 1 0 |a ENZYMES 
690 1 0 |a GRAPHITE ELECTRODES 
690 1 0 |a OXYGEN 
690 1 0 |a PEROXIDES 
690 1 0 |a DIRECT ELECTRON TRANSFER 
690 1 0 |a ELECTROREDUCTION OF OXYGENS 
690 1 0 |a INHIBITION MECHANISMS 
690 1 0 |a INHIBITOR CONCENTRATION 
690 1 0 |a LACCASES 
690 1 0 |a NANOSTRUCTURED CARBONS 
690 1 0 |a OXYGEN REDUCTION REACTION 
690 1 0 |a RATE DETERMINING STEP 
690 1 0 |a ENZYME INHIBITION 
690 1 0 |a GRAPHITE 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a LACCASE 
690 1 0 |a NANOMATERIAL 
690 1 0 |a OXYGEN 
690 1 0 |a IMMOBILIZED ENZYME 
690 1 0 |a LACCASE 
690 1 0 |a NANOMATERIAL 
690 1 0 |a OXYGEN 
690 1 0 |a ARTICLE 
690 1 0 |a BIOCATALYSIS 
690 1 0 |a CHEMICAL REACTION 
690 1 0 |a CURRENT DENSITY 
690 1 0 |a ELECTRICAL PARAMETERS 
690 1 0 |a ELECTROCHEMISTRY 
690 1 0 |a ELECTRON TRANSPORT 
690 1 0 |a ELECTROREDUCTION 
690 1 0 |a ENZYME MECHANISM 
690 1 0 |a INHIBITION KINETICS 
690 1 0 |a NONHUMAN 
690 1 0 |a OXYGEN ELECTRODE 
690 1 0 |a OXYGEN REDUCTION REACTION 
690 1 0 |a OXYGEN TENSION 
690 1 0 |a SURFACE AREA 
690 1 0 |a TRAMETES 
690 1 0 |a TRAMETES TROGII 
690 1 0 |a BIOENERGY 
690 1 0 |a CHEMISTRY 
690 1 0 |a ELECTRODE 
690 1 0 |a ENZYMOLOGY 
690 1 0 |a METABOLISM 
690 1 0 |a MICROBIOLOGY 
690 1 0 |a OXIDATION REDUCTION REACTION 
690 1 0 |a BIOELECTRIC ENERGY SOURCES 
690 1 0 |a ELECTRODES 
690 1 0 |a ENZYMES, IMMOBILIZED 
690 1 0 |a GRAPHITE 
690 1 0 |a LACCASE 
690 1 0 |a NANOSTRUCTURES 
690 1 0 |a OXIDATION-REDUCTION 
690 1 0 |a OXYGEN 
690 1 0 |a TRAMETES 
650 1 7 |2 spines  |a CARBON 
650 1 7 |2 spines  |a CARBON 
650 1 7 |2 spines  |a CARBON 
700 1 |a Scodeller, P. 
700 1 |a Grattieri, M. 
700 1 |a Villalba, M. 
700 1 |a Calvo, E.J. 
773 0 |d Elsevier B.V., 2016  |g v. 109  |h pp. 101-107  |p Bioelectrochemistry  |x 15675394  |w (AR-BaUEN)CENRE-3947  |t Bioelectrochemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957718758&doi=10.1016%2fj.bioelechem.2016.01.007&partnerID=40&md5=dfb9bce68afd50d83d33ea48eb74e383  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.bioelechem.2016.01.007  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15675394_v109_n_p101_Adam  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15675394_v109_n_p101_Adam  |y Registro en la Biblioteca Digital 
961 |a paper_15675394_v109_n_p101_Adam  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76925