Revisiting direct electron transfer in nanostructured carbon laccase oxygen cathodes
The biocatalytic electroreduction of oxygen has been studied on large surface area graphite and Vulcan® carbon electrodes with adsorbed Trametes trogii laccase. The electrokinetics of the O2 reduction reaction (ORR) was studied at different electrode potentials, O2 partial pressures and concentratio...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier B.V.
2016
|
| Materias: | |
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 18802caa a22017537a 4500 | ||
|---|---|---|---|
| 001 | PAPER-15972 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204650.0 | ||
| 008 | 190411s2016 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84957718758 | |
| 024 | 7 | |2 cas |a carbon, 7440-44-0; graphite, 7782-42-5; hydrogen peroxide, 7722-84-1; laccase, 80498-15-3; oxygen, 7782-44-7; Carbon; Enzymes, Immobilized; Graphite; Laccase; Oxygen | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a BIOEF | ||
| 100 | 1 | |a Adam, C. | |
| 245 | 1 | 0 | |a Revisiting direct electron transfer in nanostructured carbon laccase oxygen cathodes |
| 260 | |b Elsevier B.V. |c 2016 | ||
| 270 | 1 | 0 | |m Calvo, E.J.; INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Xu, F., Shin, W.S., Brown, S.H., Wahleithner, J.A., Sundaram, U.M., Solomon, E.I., A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability (1996) Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1292, pp. 303-311 | ||
| 504 | |a Gallaway, J.W., Barton, S.A.C., Kinetics of redox polymer-mediated enzyme electrodes (2008) J. Am. Chem. Soc., 130, pp. 8527-8536 | ||
| 504 | |a Mano, N., Soukharev, V., Heller, A., A laccase-wiring redox hydrogel for efficient catalysis of O-2 electroreduction (2006) J. Phys. Chem. B, 110, pp. 11180-11187 | ||
| 504 | |a Scodeller, P., Carballo, R., Szamocki, R., Levin, L., Forchiassin, F., Calvo, E.J., Layer-by-layer self assembled osmium polymer mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide (2010) J. Am. Chem. Soc., 132, pp. 11132-11140 | ||
| 504 | |a Blanford, C.F., Heath, R.S., Armstrong, F.A., A stable electrode for high-potential, electrocatalytic O-2 reduction based on rational attachment of a blue copper oxidase to a graphite surface (2007) Chem. Commun., pp. 1710-1712 | ||
| 504 | |a Blanford, C.F., Heath, R.S., Armstrong, F.A., Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons (2008) Faraday Discussion 140: Electocatalysis - Theory and Experiment at the Interface, , Royal Society of Chemistry, Southampton, UK, A. Russell (Ed.) | ||
| 504 | |a Parimi, N.S., Umasankar, Y., Atanassov, P., Ramasamy, R.P., Kinetic and mechanistic parameters of laccase catalyzed direct electrochemical oxygen reduction reaction (2012) ACS Catal., 2, pp. 38-44 | ||
| 504 | |a Sosna, M., Chretien, J.-M., Kilburn, J.D., Bartlett, P.N., Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation (2010) Phys. Chem. Chem. Phys., 12, pp. 10018-10026 | ||
| 504 | |a Solomon, E.I., Baldwin, M.J., Lowery, M.D., Electronic-structures of active-sites in copper proteins - contributions to reactivity (1992) Chem. Rev., 92, pp. 521-542 | ||
| 504 | |a Solomon, E.I., Sundaram, U.M., Machonkin, T.E., Multicopper oxidases and oxygenases (1996) Chem. Rev., 96, pp. 2563-2605 | ||
| 504 | |a Chen, T., Barton, S.C., Binyamin, G., Gao, Z.Q., Zhang, Y.C., Kim, H.H., Heller, A., A miniature biofuel cell (2001) J. Am. Chem. Soc., 123, pp. 8630-8631 | ||
| 504 | |a Palmore, G.T.R., Kim, H.H., Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell (1999) J. Electroanal. Chem., 464, pp. 110-117 | ||
| 504 | |a Tarasevich, M.R., Bogdanovskaya, V.A., Kuznetsova, L.N., Bioelectrocatalytic reduction of oxygen in the presence of laccase adsorbed on carbon electrodes (2001) Russ. J. Electrochem., 37, pp. 833-837 | ||
| 504 | |a Tarasevich, M.R., Yaropolov, A.I., Bogdanovskaya, V.A., Varfolomeev, S.D., Electrocatalysis of a cathodic oxygen reduction by laccase (1979) Bioelectrochem. Bioenerg., 6, pp. 393-403 | ||
| 504 | |a Berezin, I.V., Bogdanovskaya, V.A., Varfolomeev, S.D., Tarasevich, M.R., Yaropolov, A.I., Equilibrium oxygen potential in the preswence of laccase (1978) Dokl. Akad. Nauk SSR, 240 (3), pp. 615-618 | ||
| 504 | |a Thorum, M.S., Anderson, C.A., Hatch, J.J., Campbell, A.S., Marshall, N.M., Zimmerman, S.C., Lu, Y., Gewirth, A.A., Direct, electrocatalytic oxygen reduction by laccase on anthracene-2-methanethiol-modified gold (2010) J. Phys. Chem. Lett., 1, pp. 2251-2254 | ||
| 504 | |a Thuesen, M.H., Farver, O., Reinhammar, B., Ulstrup, J., Cyclic voltammetry and electrocatalysis of the blue copper oxidase polyporus versicolor laccase (1998) Acta Chem. Scand., 52, pp. 555-562 | ||
| 504 | |a Vaz-Dominguez, C., Campuzano, S., Rüdiger, O., Pita, M., Gorbacheva, M., Shleev, S., Fernandez, V.M., De Lacey, A.L., Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition (2008) Biosens. Bioelectron., 24, pp. 531-537 | ||
| 504 | |a Blanford, C.F., Foster, C.E., Heath, R.S., Armstrong, F.A., Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons (2008) Faraday Discuss., 140, pp. 319-335 | ||
| 504 | |a Sosna, M., Boer, H., Bartlett, P.N., A his-tagged Melanocarpus albomyces laccase and its electrochemistry upon immobilisation on NTA-modified electrodes and in conducting polymer films (2013) ChemPhysChem, 14, pp. 2225-2231 | ||
| 504 | |a Sosna, M., Chrétien, J.M., Kilburn, J.D., Bartlett, P.N., Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation (2010) Phys. Chem. Chem. Phys., 12, pp. 10018-10026 | ||
| 504 | |a Sosna, M., Stoica, L., Wright, E., Kilburn, J.D., Schuhmann, W., Bartlett, P.N., Mass transport controlled oxygen reduction at anthraquinone modified 3D-CNT electrodes with immobilized Trametes hirsuta laccase (2012) Phys. Chem. Chem. Phys., 14, pp. 11882-11885 | ||
| 504 | |a Armstrong, F.A., Recent developments in dynamic electrochemical studies of adsorbed enzymes and their active sites (2005) Curr. Opin. Chem. Biol., 9, pp. 110-117 | ||
| 504 | |a Dagys, M., Haberska, K., Shleev, S., Arnebrant, T., Kulys, J., Ruzgas, T., Laccase-gold nanoparticle assisted bioelectrocatalytic reduction of oxygen (2010) Electrochem. Commun., 12, pp. 933-935 | ||
| 504 | |a Gutiérrez-Sánchez, C., Pita, M., Vaz-Domínguez, C., Shleev, S., De Lacey, A.L., Gold nanoparticles as electronic bridges for laccase-based biocathodes (2012) J. Am. Chem. Soc., 134, pp. 17212-17220 | ||
| 504 | |a Shen, Y., Trauble, M., Wittstock, G., Electrodeposited noble metal particles in polyelectrolyte multilayer matrix as electrocatalyst for oxygen reduction studied using SECM (2008) Phys. Chem. Chem. Phys., 10, pp. 3635-3644 | ||
| 504 | |a Shleev, S., Christenson, A., Serezhenkov, V., Burbaev, D., Yaropolov, A., Gorton, L., Ruzgas, T., Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode (2005) Biochem. J., 385, pp. 745-754 | ||
| 504 | |a Shleev, S., Jarosz-Wilkolazka, A., Khalunina, A., Morozova, O., Yaropolov, A., Ruzgas, T., Gorton, L., Direct electron transfer reactions of laccases from different origins on carbon electrodes (2005) Bioelectrochemistry, 67, pp. 115-124 | ||
| 504 | |a Shleev, S., Pita, M., Yaropolov, A.I., Ruzgas, T., Gorton, L., Direct heterogeneous electron transfer reactions of Trametes hirsuta laccase at bare and thiol-modified gold electrodes (2006) Electroanalysis, 18, pp. 1901-1908 | ||
| 504 | |a Shleev, S., Shumakovich, G., Morozova, O., Yaropolov, A., Stable 'floating' air diffusion biocathode based on direct electron transfer reactions between carbon particles and high redox potential laccase (2010) Fuel Cells, 10, pp. 726-733 | ||
| 504 | |a Shrier, A., Giroud, F., Rasmussen, M., Minteer, S.D., Operational stability assays for bioelectrodes for biofuel cells: effect of immobilization matrix on laccase biocathode stability (2014) J. Electrochem. Soc., 161, pp. H244-H248 | ||
| 504 | |a Climent, V., Zhang, J., Friis, E.P., Ostergaard, L.H., Ulstrup, J., Voltammetry and single-molecule in situ scanning tunneling microscopy of laccases and bilirubin oxidase in electrocatalytic dioxygen reduction on Au(111) single-crystal electrodes (2012) J. Phys. Chem. C, 116, pp. 1232-1243 | ||
| 504 | |a Szamocki, R., Flexer, V., Levin, L., Forchiasin, F., Calvo, E.J., Oxygen cathode based on a layer-by-layer self-assembled laccase and osmium redox mediator (2009) Electrochim. Acta, 54, pp. 1970-1977 | ||
| 504 | |a Milton, R.D., Giroud, F., Thumser, A.E., Minteer, S.D., Slade, R.C.T., Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement (2013) Phys. Chem. Chem. Phys., 15, pp. 19371-19379 | ||
| 504 | |a Grattieri, M., Scodeller, P., Adam, C., Calvo, E.J., Non-competitive reversible inhibition of laccase by H2O2 in osmium mediated layer-by-layer multilayer O2 biocathodes (2015) J. Electrochem. Soc., 162, pp. G82-G86 | ||
| 504 | |a Milton, R.D., Minteer, S.D., Investigating the reversible inhibition model of laccase by hydrogen peroxide for bioelectrocatalytic applications (2014) J. Electrochem. Soc., 161, pp. H3011-H3014 | ||
| 504 | |a Garzillo, A.M., Colao, M.C., Buonocore, V., Oliva, R., Falcigno, L., Saviano, M., Santoro, A.M., Sannia, G., Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii (2001) Protein J., 20, pp. 191-201 | ||
| 504 | |a Solomon, E.I., Baldwin, M.J., Lowery, M.D., Electronic structures of active sites in copper proteins: contributions to reactivity (1992) Chem. Rev., 92, pp. 521-542 | ||
| 520 | 3 | |a The biocatalytic electroreduction of oxygen has been studied on large surface area graphite and Vulcan® carbon electrodes with adsorbed Trametes trogii laccase. The electrokinetics of the O2 reduction reaction (ORR) was studied at different electrode potentials, O2 partial pressures and concentrations of hydrogen peroxide.Even though the overpotential at 0.25 mA·cm-2 for the ORR at T1Cu of the adsorbed laccase on carbon is 0.8 V lower than for Pt of similar geometric area, the rate of the reaction and thus the operative current density is limited by the enzyme reaction rate at the T2/T3 cluster site for the adsorbed enzyme. The transition potential for the rate determining step from the direct electron transfer (DET) to the enzyme reaction shifts to higher potentials at higher oxygen partial pressure.Hydrogen peroxide produced by the ORR on bare carbon support participates in an inhibition mechanism, with uncompetitive predominance at high H2O2 concentration, non-competitive contribution can be detected at low inhibitor concentration. © 2016 Elsevier B.V. |l eng | |
| 536 | |a Detalles de la financiación: Universidad de Buenos Aires | ||
| 536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, Pict 1452/2012 | ||
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas | ||
| 536 | |a Detalles de la financiación: Università degli Studi di Milano, UniMi | ||
| 536 | |a Detalles de la financiación: The authors acknowledge financial support from CONICET , ANPCyT (Pict 1452/2012 ) and the University of Buenos Aires (UBA) . MG acknowledges Università degli Studi di Milano for a Ph.D Student fellowship to visit UBA. Appendix A | ||
| 536 | |a Detalles de la financiación: Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.bioelechem.2016.01.007 . Catherine Adam is a post-doctoral researcher in the group of Ernesto J. Calvo in INQUIMAE at the University of Buenos Aires. She finished her Ph.D on opto-electrochemical sensors at the University of Bordeaux in 2013 in the group of Analytical Nanosystems (NSysA) with the Pr. Neso Sojic. She got her bachelor and master degrees in Chemistry from the University of Strasbourg. Her research interests focus on physical chemistry particularly in electrochemistry applied to the development of sensors and in the field of energy production. year postdoc. In February of 2015 he joined the Cancer Biology lab led by Dr. Tambet Teesalu, in the University of Tartu, Estonia. Pablo Scodeller , from Argentina, concluded his PhD studies in the University of Buenos Aires under the supervision of Dr. Ernesto Calvo. He went on to work in the ‘Chemistry of Nanomaterials’ group led by Dr. Galo Soler Illia, in Buenos Aires, both with fellowships from the National Research Council (CONICET). In 2013 he joined the ‘Vascular Mapping Laboratory’ of Dr. Erkki Ruoslahti at Sanford-Burnham Medical research Institute, La Jolla, USA for a 2 Matteo Grattieri is a PhD Candidate in Industrial Chemistry and Chemical Engineering at Politecnico di Milano since 2013. His Ph.D. research is focused on enzymatic micro-sensors development and electrochemical study of microbial fuel cells. He got his BS and MS degrees in Chemistry at the University of Milan, focusing on physical chemistry/electrochemistry. He was visiting researcher at the University of Buenos Aires (Argentina) with Prof. Ernesto J. Calvo and at the University of New Mexico, NM (USA) with Prof. Plamen Atanassov. Since 2011 he is working and collaborating with the research groups of Pierangela Cristiani (RSE) and Stefano Trasatti (UNIMI). Matias A. Villalba is a postdoctoral researcher fellow at Arizona State University in the Moore–Moore–Gust group which is focused on artificial photosynthesis. He obtained his Ph.D at the University of Buenos Aires under the supervision of Prof. Ernesto J. Calvo and his thesis dealt with the formation of palladium nanocatalysts within self-assembled multilayer films built via electrostatic and covalent interactions. He got his bachelor degree at the University of Litoral (Argentina) under the supervision of Claudia Adam, working on synthesis of ionic liquids and their properties in the microscale as surfactants. At present, his research interests are sunlight harvesting, photovoltaics devices and energy conversion. Ernesto J. Calvo is Full Professor of Chemistry University of Buenos Aires and Senior Research Fellow of the Argentine Science and Technology Research Council (CONICET). BSc in Chemistry Univ. of Buenos Aires 1975 and PhD from University of La Plata 1979 (Argentina). Posdoctoral fellow at Imperial College, London with Prof. W.J. Albery and B.C.H. Steele (1979–1982) and Senior Research Fellow at CWRU, Cleveland with Prof. E.B. Yeager (1983–1984). Topics of interest: interfacial electrochemistry, nanotechnology, electro-synthesis and lithium batteries. Enesto Calvo has been awarded the John Simon Guggenheim Foundation Award (2000), Konex Foundation Merit Medal (2003, Argentina), Fellow of the Royal Society of Chemistry, 2005 (FRSC), Fellow of IUPAC. He has been elected Vice President of the International Society of Electrochemistry (2009–2011). | ||
| 593 | |a INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina | ||
| 593 | |a Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia Ravila 14b, Tartu, 50411, Estonia | ||
| 593 | |a Department of Chemistry, Materials and Chemical-Engineering, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, Milan, 20133, Italy | ||
| 593 | |a Center for Bio-energy and Photosynthesis, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, United States | ||
| 690 | 1 | 0 | |a CATALYSIS |
| 690 | 1 | 0 | |a INHIBITION |
| 690 | 1 | 0 | |a LACCASE |
| 690 | 1 | 0 | |a NANOSTRUCTURED CARBON |
| 690 | 1 | 0 | |a OXYGEN REDUCTION REACTION (ORR) |
| 690 | 1 | 0 | |a CATALYSIS |
| 690 | 1 | 0 | |a ELECTRODES |
| 690 | 1 | 0 | |a ELECTROHYDRODYNAMICS |
| 690 | 1 | 0 | |a ELECTROLYTIC REDUCTION |
| 690 | 1 | 0 | |a ELECTROMAGNETIC FIELDS |
| 690 | 1 | 0 | |a ELECTRON TRANSITIONS |
| 690 | 1 | 0 | |a ENZYME ELECTRODES |
| 690 | 1 | 0 | |a ENZYMES |
| 690 | 1 | 0 | |a GRAPHITE ELECTRODES |
| 690 | 1 | 0 | |a OXYGEN |
| 690 | 1 | 0 | |a PEROXIDES |
| 690 | 1 | 0 | |a DIRECT ELECTRON TRANSFER |
| 690 | 1 | 0 | |a ELECTROREDUCTION OF OXYGENS |
| 690 | 1 | 0 | |a INHIBITION MECHANISMS |
| 690 | 1 | 0 | |a INHIBITOR CONCENTRATION |
| 690 | 1 | 0 | |a LACCASES |
| 690 | 1 | 0 | |a NANOSTRUCTURED CARBONS |
| 690 | 1 | 0 | |a OXYGEN REDUCTION REACTION |
| 690 | 1 | 0 | |a RATE DETERMINING STEP |
| 690 | 1 | 0 | |a ENZYME INHIBITION |
| 690 | 1 | 0 | |a GRAPHITE |
| 690 | 1 | 0 | |a HYDROGEN PEROXIDE |
| 690 | 1 | 0 | |a LACCASE |
| 690 | 1 | 0 | |a NANOMATERIAL |
| 690 | 1 | 0 | |a OXYGEN |
| 690 | 1 | 0 | |a IMMOBILIZED ENZYME |
| 690 | 1 | 0 | |a LACCASE |
| 690 | 1 | 0 | |a NANOMATERIAL |
| 690 | 1 | 0 | |a OXYGEN |
| 690 | 1 | 0 | |a ARTICLE |
| 690 | 1 | 0 | |a BIOCATALYSIS |
| 690 | 1 | 0 | |a CHEMICAL REACTION |
| 690 | 1 | 0 | |a CURRENT DENSITY |
| 690 | 1 | 0 | |a ELECTRICAL PARAMETERS |
| 690 | 1 | 0 | |a ELECTROCHEMISTRY |
| 690 | 1 | 0 | |a ELECTRON TRANSPORT |
| 690 | 1 | 0 | |a ELECTROREDUCTION |
| 690 | 1 | 0 | |a ENZYME MECHANISM |
| 690 | 1 | 0 | |a INHIBITION KINETICS |
| 690 | 1 | 0 | |a NONHUMAN |
| 690 | 1 | 0 | |a OXYGEN ELECTRODE |
| 690 | 1 | 0 | |a OXYGEN REDUCTION REACTION |
| 690 | 1 | 0 | |a OXYGEN TENSION |
| 690 | 1 | 0 | |a SURFACE AREA |
| 690 | 1 | 0 | |a TRAMETES |
| 690 | 1 | 0 | |a TRAMETES TROGII |
| 690 | 1 | 0 | |a BIOENERGY |
| 690 | 1 | 0 | |a CHEMISTRY |
| 690 | 1 | 0 | |a ELECTRODE |
| 690 | 1 | 0 | |a ENZYMOLOGY |
| 690 | 1 | 0 | |a METABOLISM |
| 690 | 1 | 0 | |a MICROBIOLOGY |
| 690 | 1 | 0 | |a OXIDATION REDUCTION REACTION |
| 690 | 1 | 0 | |a BIOELECTRIC ENERGY SOURCES |
| 690 | 1 | 0 | |a ELECTRODES |
| 690 | 1 | 0 | |a ENZYMES, IMMOBILIZED |
| 690 | 1 | 0 | |a GRAPHITE |
| 690 | 1 | 0 | |a LACCASE |
| 690 | 1 | 0 | |a NANOSTRUCTURES |
| 690 | 1 | 0 | |a OXIDATION-REDUCTION |
| 690 | 1 | 0 | |a OXYGEN |
| 690 | 1 | 0 | |a TRAMETES |
| 650 | 1 | 7 | |2 spines |a CARBON |
| 650 | 1 | 7 | |2 spines |a CARBON |
| 650 | 1 | 7 | |2 spines |a CARBON |
| 700 | 1 | |a Scodeller, P. | |
| 700 | 1 | |a Grattieri, M. | |
| 700 | 1 | |a Villalba, M. | |
| 700 | 1 | |a Calvo, E.J. | |
| 773 | 0 | |d Elsevier B.V., 2016 |g v. 109 |h pp. 101-107 |p Bioelectrochemistry |x 15675394 |w (AR-BaUEN)CENRE-3947 |t Bioelectrochemistry | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957718758&doi=10.1016%2fj.bioelechem.2016.01.007&partnerID=40&md5=dfb9bce68afd50d83d33ea48eb74e383 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.bioelechem.2016.01.007 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_15675394_v109_n_p101_Adam |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15675394_v109_n_p101_Adam |y Registro en la Biblioteca Digital |
| 961 | |a paper_15675394_v109_n_p101_Adam |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 76925 | ||