An inhomogeneous singular perturbation problem for the p(x)-Laplacian Dedicated to our dear friend and colleague Juan Luis Vázquez on the occasion of his 70th birthday

In this paper we study the following singular perturbation problem for the pϵ(x)-Laplacian: Δpϵ (x)uϵ:=div(|∇uϵ(x)|pϵ (x)-2∇ uϵ)=βϵ(uϵ)+fϵ,uϵ≥0, (Pϵ(fϵ, pϵ)) where ϵ>0, βϵ(s)=1/ϵβ(s/ϵ), with β a Lipschitz function satisfying β>0 in (0,1), β≡0 outside (0,1) and ∫β(s)ds=M. The functions...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lederman, C.
Otros Autores: Wolanski, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:In this paper we study the following singular perturbation problem for the pϵ(x)-Laplacian: Δpϵ (x)uϵ:=div(|∇uϵ(x)|pϵ (x)-2∇ uϵ)=βϵ(uϵ)+fϵ,uϵ≥0, (Pϵ(fϵ, pϵ)) where ϵ>0, βϵ(s)=1/ϵβ(s/ϵ), with β a Lipschitz function satisfying β>0 in (0,1), β≡0 outside (0,1) and ∫β(s)ds=M. The functions uϵ, fϵ and pϵ are uniformly bounded. We prove uniform Lipschitz regularity, we pass to the limit (ϵ→0) and we show that, under suitable assumptions, limit functions are weak solutions to the free boundary problem: u≥0 and {Δp(x)u = f in {u>0}u=0,|∇u|=λ ∗(x)on ∂{u>0} (P(f, p, λ∗)) with λ∗ (x)=(p(x)/p(x)-1 M)1/p(x), p = lim pϵ and f = lim fϵ. In Lederman and Wolanski (submitted) we prove that the free boundary of a weak solution is a C1,α surface near flat free boundary points. This result applies, in particular, to the limit functions studied in this paper. © 2015 Elsevier Ltd. All rights reserved.
Bibliografía:Aboulaich, R., Meskine, D., Souissi, A., New diffusion models in image processing (2008) Comput. Math. Appl., 56 (4), pp. 874-882
Andersson, J., Weiss, G.S., A parabolic free boundary problem with Bernoulli type condition on the free boundary (2009) J. Reine Angew. Math., 627, pp. 213-235
Berestycki, H., Caffarelli, L.A., Nirenberg, L., Uniform estimates for regularization of free boundary problems (1990) Analysis and Partial Differential Equations, 122, pp. 567-619. , Cora Sadosky, Lecture Notes in Pure and Applied Mathematics Marcel Dekker New York
Berestycki, H., Larrouturou, B., Quelques aspects mathématiques de la propagation des flammes prémélangées (1991) Nonlinear Partial Differential Equations and Their Applications, 10, pp. 65-129. , H. Brezis, J.L. Lions, Collège de France Seminar Pitman London
Caffarelli, L.A., Lederman, C., Wolanski, N., Uniform estimates and limits for a two phase parabolic singular perturbation problem (1997) Indiana Univ. Math. J., 46 (2), pp. 453-490
Caffarelli, L.A., Lederman, C., Wolanski, N., Pointwise and viscosity solutions for the limit of a two phase parabolic singular perturbation problem (1997) Indiana Univ. Math. J., 46 (3), pp. 719-740
Caffarelli, L.A., Vazquez, J.L., A free boundary problem for the heat equation arising in flame propagation (1995) Trans. Amer. Math. Soc., 347, pp. 411-441
Challal, S., Lyaghfouri, A., Second order regularity for the p(x)-Laplace operator (2011) Math. Nachr., 284 (10), pp. 1270-1279
Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image restoration (2006) SIAM J. Appl. Math., 66 (4), pp. 1383-1406
Danielli, D., Petrosyan, A., Shahgholian, H., A singular perturbation problem for the p-Laplace operator (2003) Indiana Univ. Math. J., 52 (2), pp. 457-476
Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M., (2011) Lebesque and Sobolev Spaces with Variable Exponents, 2017. , Lecture Notes in Mathematics Springer
Fan, X., Global C1,α regularity for variable exponent elliptic equations in divergence form (2007) J. Differential Equations, 235, pp. 397-417
Fernandez Bonder, J., Martínez, S., Wolanski, N., A free boundary problem for the p(x)-Laplacian (2010) Nonlinear Anal., 72, pp. 1078-1103
Kováčik, O., Rákosník, J., On spaces Lp(x) and Wk,p(x) (1991) Czechoslovak Math. J., 41, pp. 592-618
Lederman, C., Oelz, D., A quasilinear parabolic singular perturbation problem (2008) Interfaces Free Bound., 10 (4), pp. 447-482
Lederman, C., Wolanski, N., Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem (1998) Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 27 (2), pp. 253-288
Lederman, C., Wolanski, N., A two phase elliptic singular perturbation problem with a forcing term (2006) J. Math. Pures Appl., 86 (6), pp. 552-589
Lederman, C., Wolanski, N., Singular perturbation in a nonlocal diffusion problem (2006) Comm. Partial Differential Equations, 31 (2), pp. 195-241
Lederman, C., Wolanski, N., Weak Solutions and Regularity of the Interface in An Inhomogeneous Free Boundary Problem for the P(x)-Laplacian, , submitted
Lederman, C., Wolanski, N., On Inhomogeneous Minimization Problems for the P(x)-Laplacian, , in preparation
Martínez, S., Wolanski, N., A singular perturbation problem for a quasi-linear operator satisfying the natural growth condition of Lieberman (2009) SIAM J. Math. Anal., 40 (1), pp. 318-359
Moreira, D., Wang, L., Singular perturbation method for inhomogeneous nonlinear free boundary problems (2014) Calc. Var. Partial Differential Equations, 49 (3-4), pp. 1237-1261
Ricarte, G., Teixeira, E., Fully nonlinear singularly perturbed equations and asymptotic free boundaries (2011) J. Funct. Anal., 261, pp. 1624-1673
Ruzicka, M., (2000) Electrorheological Fluids: Modeling and Mathematical Theory, , Springer-Verlag Berlin
Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations (1984) J. Differential Equations, 51, pp. 126-150
Vazquez, J.L., The free boundary problem for the heat equation with fixed gradient condition (1996) Free Boundary Problems, Theory and Applications (Zakopane, 1995), 363, pp. 277-302. , M. Niezgódka, P. Strzelecki, Pitman Res. Notes Math. Ser. Longman Harlow
Weiss, G.S., A singular limit arising in combustion theory: Fine properties of the free boundary (2003) Calc. Var. Partial Differential Equations, 17 (3), pp. 311-340
Wolanski, N., Local bounds, Harnack inequality and Hölder continuity for divergence type elliptic equations with non-standard growth (2015) Rev. Un. Mat. Argentina, 56 (1), pp. 73-105
Zeldovich, Ya.B., Frank-Kamenetski, D.A., The theory of thermal propagation of flames (1938) Zh. Fiz. Khim., 12, pp. 100-105. , (in Russian); English translation in "Collected Works of Ya. B. Zeldovich", vol. 1, Princeton Univ. Press, 1992
ISSN:0362546X
DOI:10.1016/j.na.2015.09.026