An inhomogeneous singular perturbation problem for the p(x)-Laplacian Dedicated to our dear friend and colleague Juan Luis Vázquez on the occasion of his 70th birthday

In this paper we study the following singular perturbation problem for the pϵ(x)-Laplacian: Δpϵ (x)uϵ:=div(|∇uϵ(x)|pϵ (x)-2∇ uϵ)=βϵ(uϵ)+fϵ,uϵ≥0, (Pϵ(fϵ, pϵ)) where ϵ>0, βϵ(s)=1/ϵβ(s/ϵ), with β a Lipschitz function satisfying β>0 in (0,1), β≡0 outside (0,1) and ∫β(s)ds=M. The functions...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lederman, C.
Otros Autores: Wolanski, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08623caa a22008177a 4500
001 PAPER-15939
003 AR-BaUEN
005 20230518204647.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84950248198 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NOAND 
100 1 |a Lederman, C. 
245 1 3 |a An inhomogeneous singular perturbation problem for the p(x)-Laplacian Dedicated to our dear friend and colleague Juan Luis Vázquez on the occasion of his 70th birthday 
260 |b Elsevier Ltd  |c 2016 
270 1 0 |m Wolanski, N.; IMAS-CONICET, Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: wolanski@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Aboulaich, R., Meskine, D., Souissi, A., New diffusion models in image processing (2008) Comput. Math. Appl., 56 (4), pp. 874-882 
504 |a Andersson, J., Weiss, G.S., A parabolic free boundary problem with Bernoulli type condition on the free boundary (2009) J. Reine Angew. Math., 627, pp. 213-235 
504 |a Berestycki, H., Caffarelli, L.A., Nirenberg, L., Uniform estimates for regularization of free boundary problems (1990) Analysis and Partial Differential Equations, 122, pp. 567-619. , Cora Sadosky, Lecture Notes in Pure and Applied Mathematics Marcel Dekker New York 
504 |a Berestycki, H., Larrouturou, B., Quelques aspects mathématiques de la propagation des flammes prémélangées (1991) Nonlinear Partial Differential Equations and Their Applications, 10, pp. 65-129. , H. Brezis, J.L. Lions, Collège de France Seminar Pitman London 
504 |a Caffarelli, L.A., Lederman, C., Wolanski, N., Uniform estimates and limits for a two phase parabolic singular perturbation problem (1997) Indiana Univ. Math. J., 46 (2), pp. 453-490 
504 |a Caffarelli, L.A., Lederman, C., Wolanski, N., Pointwise and viscosity solutions for the limit of a two phase parabolic singular perturbation problem (1997) Indiana Univ. Math. J., 46 (3), pp. 719-740 
504 |a Caffarelli, L.A., Vazquez, J.L., A free boundary problem for the heat equation arising in flame propagation (1995) Trans. Amer. Math. Soc., 347, pp. 411-441 
504 |a Challal, S., Lyaghfouri, A., Second order regularity for the p(x)-Laplace operator (2011) Math. Nachr., 284 (10), pp. 1270-1279 
504 |a Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image restoration (2006) SIAM J. Appl. Math., 66 (4), pp. 1383-1406 
504 |a Danielli, D., Petrosyan, A., Shahgholian, H., A singular perturbation problem for the p-Laplace operator (2003) Indiana Univ. Math. J., 52 (2), pp. 457-476 
504 |a Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M., (2011) Lebesque and Sobolev Spaces with Variable Exponents, 2017. , Lecture Notes in Mathematics Springer 
504 |a Fan, X., Global C1,α regularity for variable exponent elliptic equations in divergence form (2007) J. Differential Equations, 235, pp. 397-417 
504 |a Fernandez Bonder, J., Martínez, S., Wolanski, N., A free boundary problem for the p(x)-Laplacian (2010) Nonlinear Anal., 72, pp. 1078-1103 
504 |a Kováčik, O., Rákosník, J., On spaces Lp(x) and Wk,p(x) (1991) Czechoslovak Math. J., 41, pp. 592-618 
504 |a Lederman, C., Oelz, D., A quasilinear parabolic singular perturbation problem (2008) Interfaces Free Bound., 10 (4), pp. 447-482 
504 |a Lederman, C., Wolanski, N., Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem (1998) Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 27 (2), pp. 253-288 
504 |a Lederman, C., Wolanski, N., A two phase elliptic singular perturbation problem with a forcing term (2006) J. Math. Pures Appl., 86 (6), pp. 552-589 
504 |a Lederman, C., Wolanski, N., Singular perturbation in a nonlocal diffusion problem (2006) Comm. Partial Differential Equations, 31 (2), pp. 195-241 
504 |a Lederman, C., Wolanski, N., Weak Solutions and Regularity of the Interface in An Inhomogeneous Free Boundary Problem for the P(x)-Laplacian, , submitted 
504 |a Lederman, C., Wolanski, N., On Inhomogeneous Minimization Problems for the P(x)-Laplacian, , in preparation 
504 |a Martínez, S., Wolanski, N., A singular perturbation problem for a quasi-linear operator satisfying the natural growth condition of Lieberman (2009) SIAM J. Math. Anal., 40 (1), pp. 318-359 
504 |a Moreira, D., Wang, L., Singular perturbation method for inhomogeneous nonlinear free boundary problems (2014) Calc. Var. Partial Differential Equations, 49 (3-4), pp. 1237-1261 
504 |a Ricarte, G., Teixeira, E., Fully nonlinear singularly perturbed equations and asymptotic free boundaries (2011) J. Funct. Anal., 261, pp. 1624-1673 
504 |a Ruzicka, M., (2000) Electrorheological Fluids: Modeling and Mathematical Theory, , Springer-Verlag Berlin 
504 |a Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations (1984) J. Differential Equations, 51, pp. 126-150 
504 |a Vazquez, J.L., The free boundary problem for the heat equation with fixed gradient condition (1996) Free Boundary Problems, Theory and Applications (Zakopane, 1995), 363, pp. 277-302. , M. Niezgódka, P. Strzelecki, Pitman Res. Notes Math. Ser. Longman Harlow 
504 |a Weiss, G.S., A singular limit arising in combustion theory: Fine properties of the free boundary (2003) Calc. Var. Partial Differential Equations, 17 (3), pp. 311-340 
504 |a Wolanski, N., Local bounds, Harnack inequality and Hölder continuity for divergence type elliptic equations with non-standard growth (2015) Rev. Un. Mat. Argentina, 56 (1), pp. 73-105 
504 |a Zeldovich, Ya.B., Frank-Kamenetski, D.A., The theory of thermal propagation of flames (1938) Zh. Fiz. Khim., 12, pp. 100-105. , (in Russian); English translation in "Collected Works of Ya. B. Zeldovich", vol. 1, Princeton Univ. Press, 1992 
520 3 |a In this paper we study the following singular perturbation problem for the pϵ(x)-Laplacian: Δpϵ (x)uϵ:=div(|∇uϵ(x)|pϵ (x)-2∇ uϵ)=βϵ(uϵ)+fϵ,uϵ≥0, (Pϵ(fϵ, pϵ)) where ϵ>0, βϵ(s)=1/ϵβ(s/ϵ), with β a Lipschitz function satisfying β>0 in (0,1), β≡0 outside (0,1) and ∫β(s)ds=M. The functions uϵ, fϵ and pϵ are uniformly bounded. We prove uniform Lipschitz regularity, we pass to the limit (ϵ→0) and we show that, under suitable assumptions, limit functions are weak solutions to the free boundary problem: u≥0 and {Δp(x)u = f in {u>0}u=0,|∇u|=λ ∗(x)on ∂{u>0} (P(f, p, λ∗)) with λ∗ (x)=(p(x)/p(x)-1 M)1/p(x), p = lim pϵ and f = lim fϵ. In Lederman and Wolanski (submitted) we prove that the free boundary of a weak solution is a C1,α surface near flat free boundary points. This result applies, in particular, to the limit functions studied in this paper. © 2015 Elsevier Ltd. All rights reserved.  |l eng 
593 |a IMAS-CONICET, Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, (1428), Argentina 
690 1 0 |a FREE BOUNDARY PROBLEM 
690 1 0 |a SINGULAR PERTURBATION 
690 1 0 |a VARIABLE EXPONENT SPACES 
690 1 0 |a BOUNDARY VALUE PROBLEMS 
690 1 0 |a FREE-BOUNDARY PROBLEMS 
690 1 0 |a LIPSCHITZ FUNCTIONS 
690 1 0 |a LIPSCHITZ REGULARITY 
690 1 0 |a P (X)-LAPLACIAN 
690 1 0 |a SINGULAR PERTURBATION PROBLEMS 
690 1 0 |a SINGULAR PERTURBATIONS 
690 1 0 |a UNIFORMLY BOUNDED 
690 1 0 |a VARIABLE EXPONENTS 
690 1 0 |a LAPLACE TRANSFORMS 
700 1 |a Wolanski, N. 
773 0 |d Elsevier Ltd, 2016  |g v. 138  |h pp. 300-325  |p Nonlinear Anal Theory Methods Appl  |x 0362546X  |w (AR-BaUEN)CENRE-254  |t Nonlinear Analysis, Theory, Methods and Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84950248198&doi=10.1016%2fj.na.2015.09.026&partnerID=40&md5=74c0180b3ccd8092a6e2ff2393c1a8fc  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.na.2015.09.026  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0362546X_v138_n_p300_Lederman  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v138_n_p300_Lederman  |y Registro en la Biblioteca Digital 
961 |a paper_0362546X_v138_n_p300_Lederman  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 76892