Glacial melting: An overlooked threat to Antarctic krill

Strandings of marine animals are relatively common in marine systems. However, the underlying mechanisms are poorly understood. We observed mass strandings of krill in Antarctica that appeared to be linked to the presence of glacial meltwater. Climate-induced glacial meltwater leads to an increased...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fuentes, V.
Otros Autores: Alurralde, G., Meyer, B., Aguirre, G.E, Canepa, A., Wölfl, A.-C, Hass, H.C, Williams, G.N, Schloss, I.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Nature Publishing Group 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15843caa a22013937a 4500
001 PAPER-15936
003 AR-BaUEN
005 20230518204647.0
008 170725s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84973352081 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Fuentes, V. 
245 1 0 |a Glacial melting: An overlooked threat to Antarctic krill 
260 |b Nature Publishing Group  |c 2016 
270 1 0 |m Schloss, I.R.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Argentina; email: ischloss@dna.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Pakhomov, E.A., Fuentes, V., Schloss, I.R., Atencio, A., Esnal, G.B., Beaching of the tunicate Salpa thompsoni at high levels of suspended particulate matter in the Southern Ocean (2003) Polar Biol., 26, pp. 427-431 
504 |a Schloss, I.R., Response of phytoplankton dynamics to 19-year (1991-2009) climate trends in Potter Cove (Antarctica) (2012) J Mar. Syst., 92, pp. 53-66 
504 |a Rückamp, M., Braun, M., Suckro, S., Blindow, N., Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade (2011) Global Planet. Change., 79, pp. 99-109 
504 |a Simões, J.C., Dani, N., Bremer, U.F., Aquino, F.E., Neto, J.A., Small cirque glaciers retreat on Keller Peninsula, Admiralty Bay, King George Island, Antarctica (2004) Pesqui. Antart. Bras., 4, pp. 49-56 
504 |a Klöser, H., Hydrography of Potter Cove, a small Fjord-like Inlet on King George Island (South Shetlands) (1994) Estuar. Coast Shelf S, 38, pp. 523-537 
504 |a Wölfl, A.C., Distribution and characteristics of marine habitats in a subpolar bay based on hydroacoustics and bed shear stress estimates-Potter Cove, King George Island, Antarctica (2014) Geo-Marine Letters, 34, pp. 435-446 
504 |a Monien, P., A geochemical record of late Holocene palaeoenvironmental changes at King George Island (maritime Antarctica) (2011) Antarct. Sci., 23, pp. 255-267 
504 |a Thrush, S.F., Muddy waters: Elevating sediment input to coastal and estuarine habitats (2004) Front. Ecol. Environ., 2, pp. 299-306. , (2004) 
504 |a Gutt, J., The Southern Ocean ecosystem under multiple climate change stresses - An integrated circumpolar assessment (2015) Glob. Change Biol., 21, pp. 1434-1453 
504 |a Philipps, E.E.R., Husmann, G., Abele, D., The impact of sediment deposition and iceberg scour on the Antarctic soft shell clam Laternula elliptica at King George Island, Antarctica (2011) Antarct. Sci., 23, pp. 127-138 
504 |a Torre, L., Respiratory responses of three Antarctic ascidians and a sea pen to increased sediment concentrations (2012) Polar Biol., 35, pp. 1743-1748 
504 |a Arendt, K.E., Effects of suspended sediments on copepods feeding in a glacial influenced sub-Arctic fjord (2011) J. Plankton Res., 33, pp. 1526-1537 
504 |a Carrasco, N.K., Perissinotto, R., Jones, S., Turbidity effects on feeding and mortality of the copepod Acartiella natalensis (Connell and Grindley, 1974) in the St Lucia Estuary, South Africa (2013) J. Exp. Mar. Biol. Ecol., 446, pp. 45-51 
504 |a Wenger, A.S., Johansen, J.L., Jones, G.P., Increasing suspended sediment reduces foraging, growth and condition of a planktivorous damselfish (2012) J. Exp. Mar. Biol. Ecol., 428, pp. 43-48 
504 |a Meyer, B., The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective (2012) Polar Biol., 35, pp. 15-37 
504 |a Gleiber, M.R., Steinberg, D.K., Ducklow, H.W., Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula (2012) Mar. Ecol. Prog. Ser., 471, pp. 23-36 
504 |a Atkinson, A., Siegel, V., Pakhomov, E., Rothery, P., Longterm decline in krill stock and increase in salps within the Southern Ocean (2004) Nature, 432, pp. 100-103 
504 |a Flores, H., Impact of climate change on Antarctic krill (2012) Mar. Ecol. Prog. Ser., 458, pp. 1-19 
504 |a Warren, J.D., Demer, D.A., Abundance and distribution of Antarctic krill (Euphausia superba) nearshore of Cape Shirreff, Livingston Island, Antarctica, during six austral summers between 2000 and 2007 (2010) Can. J. Fish. Aquat. Sci., 67, pp. 1159-1170 
504 |a Barrera-Oro, E.R., Casaux, R.J., Feeding selectivity in Nothotenia neglecta, Nybelin, from Potter Cove, South Shetland Islands, Antarctica (1990) Antarct. Sci., 2, pp. 207-2013 
504 |a Fanta, E., SantÁnna Rios, F., Donatti, L., Cardoso, W.E., Spatial and temporal variation in krill consumption by the Antarctic fish Notothenia coriiceps, in Admiralty Bay, King George Island (2003) Antarct. Sci., 15, pp. 458-462 
504 |a Nowacek, D.P., Super-aggregations of krill and humpback whales in Wilhelmina Bay, Antarctic Peninsula (2011) PLoS One. 
504 |a Steinberg, D.K., Long-term (1993-2013) changes in macrozooplankton off the Western Antarctic Peninsula (2015) Deep-Sea Res. I, 101, pp. 54-70 
504 |a Fey, S.B., Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events (2015) Proc. Nac. Acad. Sci. 
504 |a Ullrich, B., Storch, V., Marschall, H.P., Microscopic anatomy, functional morphology, and ultrastructure of the stomach of Euphausia superba Dana (Crustacea, Euphausiacea) (1991) Polar Biol., 11, pp. 203-211 
504 |a Schmidt, K., Seabed foraging by Antarctic krill: Implications for stock assessment, bentho-pelagic coupling, and the vertical transfer of iron (2011) Limnol. Oceanogr., 56, pp. 1411-1428 
504 |a McClatchie, S., Boyd, C.M., Morphological study of sieve efficiencies and mandibular surfaces in the Antarctic krill, Euphausia superba (1983) Can. J. Fish. Aquat. Sci., 40, pp. 955-967 
504 |a Suh, H.L., The gastric mill of euphausiid crustaceans: A comparison of eleven species (1996) Hydrobiologia, 321, pp. 235-244 
504 |a Suh, H.L., Toda, T., Morphology of the gastric mill of the genus Euphausia (Crustacea, Euphausiacea) (1992) Bull. Plankton Soc. Japan., 39, pp. 17-24 
504 |a Cook, A.J., Fox, A.J., Vaughan, D.G., Ferrigno, J.G., Retreating glacier fronts on the antarctic peninsula over the past half-century (2005) Science, 308, pp. 541-544 
504 |a Park, B.K., Chang, S.K., Yoon, H.I., Chung, H., Recent retreat of ice cliffs, King George Island, South Shetland Islands, Antarctic Peninsula (1998) Ann. Glaciol., 27, pp. 633-635 
504 |a Vogt, S., Braun, M., Influence of glaciers and snow cover on terrestrial and marine ecosystems as revealed by remotely-sensed data (2004) Pesquisa Ant. Brasil., 4, pp. 105-118 
504 |a Lund-Hansen, L.C., Andersen, T.J., Nielsen, M.H., Pejrup, M., Suspended matter, Chl-A, CDOM, grain sizes, and optical properties in the Arctic fjord-type estuary, Kangerlussuaq, West Greenland during summer (2010) Estuar. Coasts., 33, pp. 1442-1451 
504 |a Hernando, M., Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition (2015) J. Exp. Mar. Biol. Ecol., 466, pp. 110-119 
504 |a Eiane, K., Daase, M., Observations of mass mortality of Themisto libellula (Amphipoda, Hyperidae) (2002) Polar Biol., 25, pp. 396-398 
504 |a Aarset, A.V., Torres, J.J., Cold resistance and metabolic responses to salinity variations in the amphipod Eusirus antarcticus and the krill Euphausia superba (1989) Polar Biol., 9 (8), pp. 491-497 
504 |a Tremblay, N., Abele, D., Response of three krill species to hypoxia and warming: An experimental approach to oxygen minimum zones expansion in coastal ecosystems (2015) Mar. Biol. 
504 |a Wȩsławski, J.M., Legezyńska, J., Glaciers caused zooplankton mortality? (1998) J. Plankton Res., 20, pp. 1233-1240 
504 |a Sokolova, M.N., Euphausiid "dead body rain" as a source of food for abyssal benthos (1994) Deep-Sea Res. I, 41 (4), pp. 41-746 
504 |a Zhang, J., Modeling the impact of wind intensification on Antarctic sea ice volume (2013) J. Clim., 27, pp. 202-214 
504 |a Ducklow, H.W., Marine pelagic ecosystems: The West Antarctic Peninsula (2007) Philos. T. Royal Soc. B, 362, pp. 67-94 
504 |a Atkinson, A., Oceanic circumpolar habitats of Antarctic krill (2008) Mar. Ecol. Prog. Ser., 362, pp. 1-23 
504 |a Hofmann, E.E., Lascara, C.M., Modeling the growth dynamics of Antarctic krill Euphausia superba (2000) Mar. Ecol. Prog. Ser., 194, pp. 219-231 
504 |a Ross, R.M., Palmer LTER: Patterns of distribution of five dominant zooplankton species in the epi-pelagic zone west of the Antarctic Peninsula, 1993-2004 (2008) Deep-Sea Res. II, (55), pp. 2086-2105 
504 |a Bernard, K.S., Steinberg, D.K., Schofield, O.M.E., Summertime grazing impact of the dominant macrozooplankton off the western Antarctic Peninsula (2012) Deep-Sea Res. I, 62, pp. 111-122 
504 |a Schnack-Schiel, S.B., Isla, E., The role of zooplankton in the pelagic-benthic coupling of the Southern Ocean (2005) Sci. Mar., 69, pp. 39-55 
504 |a Juáres, M.A., Adélie penguin population changes at Stranger Point: 19 years of monitoring (2015) Antar. Sci., 27, pp. 455-461 
504 |a Atkinson, A., Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage (2006) Limnol. Oceanogr., 51, pp. 973-987 
504 |a Kawaguchi, S., Risk maps for Antarctic krill under projected Southern Ocean acidification (2013) Nat. Clim. Change., 3, pp. 843-847 
504 |a Strickland, J.D.H., Parsons, D.R., A practical handbook of seawater analysis (1972) Bull. Fish. Res. Board Can., 167, pp. 1-310 
504 |a Breheny, P., Burchett, W., (2015) Visreg: Visualization of Regression Models, , http://CRAN.Rproject.org/package=visreg, R package version 2.2-0. [Accessed on February 25 2016] 
504 |a Mueller, J.L., (2000) SeaWiFS Algorithm for the Diffuse Attenuation Coefficient, K(490), Using Water-leaving Radiances at 490 and 555 Nm in SeaWiFS Postlaunch Calibration and Validation Analyses: Part 3, 11, pp. 24-27. , NASA Tech. Memo. 2000-206892, (eds Hooker, S. B., Firestone, E. R.) (NASA Goddard Space Flight Center, Greenbelt, Maryland) 
504 |a Meyer, B., Atkinson, A., Blume, B., Bathmann, U.V., Feeding and energy budgets of larval Antarctic krill Euphausia superba in summer (2003) Mar. Ecol. Prog. Ser., 267, pp. 167-177 
504 |a Båmstedt, U., (2000) ICES Zooplankton Methodology Manual, pp. 297-399. , (eds Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R., Huntley, M.) (Academic Press) 
504 |a Quinn, G.P., Keough, M.J., Potential effect of enclosure size on field experiments with herbivorous intertidal gastropods (1993) Mar. Ecol. Prog. Ser., 98, pp. 199-201 
504 |a (2014) R: A Language and Environment for Statistical Computing, , http://www.R-project.org/, R Foundation for Statistical Computing, Vienna, Austria 
504 |a Conover, R.J., Assimilation of organic matter by zooplankton (1966) Limnol. Oceanogr., 11, pp. 338-354 
504 |a Mahibbur, R.M., Govindarajulu, Z.A., Modification of the test of Shapiro and Wilks for normality (1997) J. Appl. Statist., 24, pp. 219-235 
504 |a Montgomery, D.C., Diseño y Análisis de Experimentos (1991) Grupo Editorial Iberoamérica, 585p 
504 |a Miller, R.G., Jr., (1981) Simultaneous Statistical Inference, , New York Springer-Verlag 
504 |a Di Rienzo, J.A., (2014) InfoStat Versión 2014, , http://www.infostat.com.ar, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina 
504 |a Hammer, O., Harper, D.A.T., Ryan, P.D., PAST-palaeontological statistics, ver. 1.89 (2001) Palaeont. Electr., 4, pp. 1-9 
504 |a Fry, J.C., Davies, A.R., An assessment of methods for measuring volumes of planktonic bacteria, with particular reference to television image analysis (1985) J. Appl. Microbiol., 58, pp. 105-112 
504 |a Kang, S.H., Antarctic phytoplankton assemblages in the marginal ice zone of the northwestern Weddell Sea (2001) J. Plankton Res., 23, pp. 333-352 
504 |a Von Harbou, L., Salps in the Lazarev Sea, Southern Ocean: I. Feeding dynamics (2011) Mar. Biol., 158, pp. 2009-2026 
520 3 |a Strandings of marine animals are relatively common in marine systems. However, the underlying mechanisms are poorly understood. We observed mass strandings of krill in Antarctica that appeared to be linked to the presence of glacial meltwater. Climate-induced glacial meltwater leads to an increased occurrence of suspended particles in the sea, which is known to affect the physiology of aquatic organisms. Here, we study the effect of suspended inorganic particles on krill in relation to krill mortality events observed in Potter Cove, Antarctica, between 2003 and 2012. The experimental results showed that large quantities of lithogenic particles affected krill feeding, absorption capacity and performance after only 24 h of exposure. Negative effects were related to both the threshold concentrations and the size of the suspended particles. Analysis of the stomach contents of stranded krill showed large quantities of large particles (> 106 μm3), which were most likely mobilized by glacial meltwater. Ongoing climate-induced glacial melting may impact the coastal ecosystems of Antarctica that rely on krill.  |l eng 
593 |a Instituto de Ciencias del Mar (CSIC), Barcelona, Spain 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina 
593 |a Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina 
593 |a Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany 
593 |a Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany 
593 |a School of Marine Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile 
593 |a Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Research Station, List, Germany 
593 |a Centro para el Estudio de Sistemas Marinos, Puerto Madryn, Chubut, Argentina 
593 |a Instituto Antártico Argentino, Buenos Aires, Argentina 
593 |a Institut des Sciences de la mer de Rimouski, Rimouski, QC, Canada 
690 1 0 |a ANTARCTICA 
690 1 0 |a AQUATIC SPECIES 
690 1 0 |a COASTAL WATERS 
690 1 0 |a DEGLACIATION 
690 1 0 |a EUPHAUSIA SUPERBA 
690 1 0 |a EXPERIMENTAL MODEL 
690 1 0 |a EXPOSURE 
690 1 0 |a FEEDING 
690 1 0 |a MORTALITY 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a STOMACH CONTENT 
700 1 |a Alurralde, G. 
700 1 |a Meyer, B. 
700 1 |a Aguirre, G.E. 
700 1 |a Canepa, A. 
700 1 |a Wölfl, A.-C. 
700 1 |a Hass, H.C. 
700 1 |a Williams, G.N. 
700 1 |a Schloss, I.R. 
773 0 |d Nature Publishing Group, 2016  |g v. 6  |x 20452322  |t Sci. Rep. 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84973352081&doi=10.1038%2fsrep27234&partnerID=40&md5=d07781ad5dfd95c88570d5c34c0b18da  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1038/srep27234  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_20452322_v6_n_p_Fuentes  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v6_n_p_Fuentes  |y Registro en la Biblioteca Digital 
961 |a paper_20452322_v6_n_p_Fuentes  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76889