A quantitative model for oxygen uptake and release in a family of hemeproteins

Motivation: Hemeproteins have many diverse functions that largely depend on the rate at which they uptake or release small ligands, like oxygen. These proteins have been extensively studied using either simulations or experiments, albeit only qualitatively and one or two proteins at a time. Results:...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bustamante, J.P
Otros Autores: Szretter, M.E, Sued, M., Martí, M.A, Estrin, D.A, Boechi, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Oxford University Press 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15158caa a22013217a 4500
001 PAPER-15919
003 AR-BaUEN
005 20230518204646.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84976511301 
024 7 |2 cas  |a oxygen, 7782-44-7; Hemeproteins; Ligands; Oxygen; Truncated Hemoglobins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BOINF 
100 1 |a Bustamante, J.P. 
245 1 2 |a A quantitative model for oxygen uptake and release in a family of hemeproteins 
260 |b Oxford University Press  |c 2016 
270 1 0 |m Boechi, L.; Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: lboechi@ic.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Bidon-Chanal, A., Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N (2006) Proteins, 64, pp. 457-464 
504 |a Boechi, L., Structural determinants of ligand migration in Mycobacterium tuberculosis truncated hemoglobin O (2008) Proteins, 73, pp. 372-379 
504 |a Bonamore, A., A novel thermostable hemoglobin from the actinobacterium Thermobifida fusca (2005) FEBS J., 272, pp. 4189-4201 
504 |a Boron, I., Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules (2015) F1000Res., 4, p. 22 
504 |a Brunori, M., Structural dynamics of myoglobin (2000) Biophys. Chem., 86, pp. 221-230 
504 |a Brunori, M., The role of cavities in protein dynamics: Crystal structure of a photolytic intermediate of a mutant myoglobin (2000) Proc. Natl Acad. Sci. U. S. A., 97, pp. 2058-2063 
504 |a Bustamante, J.P., Ligand uptake modulation by internal water molecules and hydrophobic cavities in hemoglobins (2014) J. Phys. Chem. B, 118, pp. 1234-1245 
504 |a Bustamante, J.P., Evolutionary and functional relationships in the truncated hemoglobin family (2016) PLoS Comp. Biol., 12, p. e1004701 
504 |a Capece, L., Small ligand-globin interactions: Reviewing lessons derived from computer simulation (2013) Biochim. Biophys. Acta, 1834, pp. 1722-1738 
504 |a Cazade, P.A., Meuwly, M., Oxygen migration pathways in NObound truncated hemoglobin (2012) Chem. Phys. Chem., 13, pp. 4276-4286 
504 |a Chodera, J., Alchemical free energy methods for drug discovery: Progress and challenges (2011) Curr. Opin. Struct. Biol., 21, pp. 150-160 
504 |a Cohen, J., Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin (2006) Biophys. J., 91, pp. 1844-1857 
504 |a Cohen, J., Finding gas migration pathways in proteins using implicit ligand sampling (2008) Methods Enzymol., 437, pp. 439-457 
504 |a Couture, M., A cooperative oxygen-binding hemoglobin from Mycobacteriumtuberculosis (1999) Proc.Natl Acad. Sci.U. S. A., 96, pp. 11223-11228 
504 |a Couture, M., Structural investigations of the hemoglobin of the cyanobacterium Synechocystis PCC6803 reveal a unique distal heme pocket (2000) Eur. J. Biochem., 267, pp. 4770-4780 
504 |a Das, T., Ligand binding in the ferric and ferrous states of paramecium hemoglobin (2000) Biochemistry, 39, pp. 14330-14340 
504 |a Dinner, A., Understanding protein folding via free-energy surfaces from theory and experiment (2000) Trends Biochem. Sci., 25, pp. 331-339 
504 |a Elber, R., Ligand diffusion in globins: Simulations versus experiment (2010) Curr. Opin. Struct. Biol., 20, pp. 162-167 
504 |a Forti, F., Ligand migration in Methanosarcina acetivorans protoglobin: Effects of ligand binding and Dimeric assembly (2011) J. Phys. Chem. B, 115, pp. 13771-13780 
504 |a Franzen, S., Spin-dependent mechanism for diatomic ligand binding to heme (2002) Proc. Natl Acad. Sci. U. S. A, 99, pp. 16754-16759 
504 |a Giangiacomo, L., The truncated oxygen-avid hemoglobin from Bacillus subtilis: X-ray structure and ligand binding properties (2005) J. Biol. Chem., 280, pp. 9192-9202 
504 |a Giordano, D., Ligand and proton-linked conformational changes of the ferrous 2/2 hemoglobin of Pseudoalteromonas haloplanktis TAC125 (2011) IUBMB Life, 63, pp. 566-573 
504 |a Giordano, D., Structural flexibility of the heme cavity in the coldadapted truncated hemoglobin from the Antarctic marine bacterium Pseudoalteromas haloplanktis TAC125 (2015) FEBS J., 282, pp. 2948-2965 
504 |a Goldbeck, R., Water and ligand entry in myoglobin: Assessing the speed and extent of heme pocket hydration after CO photodissociation (2006) Proc. Natl Acad. Sci. U. S. A, 103, pp. 1254-1259 
504 |a Guallar, V., Ligand migration in the truncated hemoglobin-II from Mycobacterium tuberculosis: The role of G8 tryptophan (2009) J. Biol. Chem., 284, pp. 3106-3116 
504 |a Hoy, J.A., The crystal structure of synechocystis hemoglobin with a covalent heme linkage (2004) J. Biol. Chem., 279, pp. 16535-16542 
504 |a Ilari, A., Crystal structure and ligand binding properties of the truncated hemoglobin from Geobacillus stearothermophilus (2007) Arch. Biochem. Biophys., 457, pp. 85-94 
504 |a Kepp, K.P., O2 binding to heme is strongly facilitated by near-degeneracy of electronic states (2013) ChemPhysChem, 14, pp. 3551-3558 
504 |a Kutner, M., (2005) Applied Linear Statistical Models, , 5th edn. McGraw Hill,Irwin 
504 |a Lama, A., Role of pre-A motif in nitric oxide scavenging by truncated hemoglobin, HbN, of Mycobacterium tuberculosis (2009) J. Biol. Chem., 284, pp. 14457-14468 
504 |a Laverman, L., Ford, P., Mechanistic studies of nitric oxide reactions with water soluble iron(II), cobalt(II), and iron(III) porphyrin complexes in aqueous solutions: Implications for biological activity (2001) J. Am. Chem. Soc., 123, pp. 11614-11622 
504 |a Laverman, L., A dissociative mechanism for reactions of nitric oxide with water soluble iron(III) porphyrins (1997) J. Am. Chem. Soc., 119, pp. 12663-12664 
504 |a Lu, C., Structural and functional properties of a truncated hemoglobin from a food-borne pathogen Campylobacter jejuni (2007) J. Biol. Chem., 282, pp. 13627-13636 
504 |a Marcelli, A., Following ligand migration pathways from picoseconds to milliseconds in type II truncated hemoglobin from Thermobifida fusca (2012) PLoS One, 7, p. e39884 
504 |a Markovitch, O., Agmon, N., Structure and energetics of the hydronium hydration shells (2007) J. Phys. Chem. A, 111, pp. 2253-2256 
504 |a Marti, M.A., Dioxygen affinity in heme proteins investigated by computer simulation (2006) J. Inorg. Biochem., 100, pp. 761-770 
504 |a Milani, M., Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme (2001) EMBO J., 20, pp. 3902-3909 
504 |a Milani, M., A TyrCD1/TrpG8 hydrogen bond network and a TyrB10-TyrCD1 covalent link shape the heme distal site of Mycobacterium tuberculosis hemoglobin O (2003) Proc. Natl Acad. Sci. U. S. A, 100, pp. 5766-5771 
504 |a Milani, M., Heme-ligand tunneling in group i truncated hemoglobins (2004) J. of Biol. Chem., 279, pp. 21520-21525 
504 |a Mishra, S., Meuwly, M., Nitric oxide dynamics in truncated hemoglobin: Docking sites, migration pathways, and vibrational spectroscopy from molecular dynamics simulations (2009) Biophys. J., 96, pp. 2105-2118 
504 |a Mishra, S., Meuwly, M., Atomistic simulation of NO dioxygenation in group i truncated hemoglobin (2010) J. Am. Chem. Soc., 132, pp. 2968-2982 
504 |a Nardini, M., Structural determinants in the group III truncated hemoglobin from Campylobacter jejuni (2006) J. Biol. Chem., 281, pp. 37803-37812 
504 |a Oliveira, A.S.F., Exploring O2 diffusion in A-type cytochrome c oxidases: Molecular dynamics simulations uncover two alternative channels towards the binuclear site (2014) PLoS Comput. Biol., 10, p. e1004010 
504 |a Olson, J., Phillips, G., Myoglobin discriminates between O2, NO, and CO by electrostatic interactions with the bound ligand (1997) J. Biol. Inorg. Chem., 2, pp. 544-552 
504 |a Ouellet, H., Reactions of Mycobacterium tuberculosis truncated hemoglobin O with ligands reveal a novel ligand-inclusive hydrogen bond network (2003) Biochemistry, 42, pp. 5764-5774 
504 |a Ouellet, H., Reaction of Mycobacterium tuberculosis truncated hemoglobin O with hydrogen peroxide: Evidence for peroxidatic activity and formation of protein-based radicals (2007) J. Biol. Chem., 282, pp. 7491-7503 
504 |a Ouellet, H., The roles of Tyr(CD1) and Trp(G8) in Mycobacterium tuberculosis truncated hemoglobin O in ligand binding and on the heme distal site architecture (2007) Biochemistry, 46, pp. 11440-11450 
504 |a Ouellet, Y., Ligand interactions in the distal heme pocket of Mycobacterium tuberculosis truncated hemoglobin N: Roles of TyrB10 and GlnE11 residues (2006) Biochemistry, 45, pp. 8770-8781 
504 |a Ouellet, Y.H., Ligand binding to truncated hemoglobin N from Mycobacterium tuberculosis is strongly modulated by the interplay between the distal heme pocket residues and internal water (2008) J. Biol. Chem., 283, pp. 27270-27278 
504 |a Pearlman, D.A., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules (1995) Comput. Phys. Commun., 91, pp. 1-41 
504 |a Perilla, J., Molecular dynamics simulations of large macromolecular complexes (2015) Curr. Opin. Struct. Biol., 31, pp. 64-74 
504 |a Perutz, M.F., Mathews, F.S., An x-ray study of azide methaemoglobin (1966) J. Mol. Biol., 21, pp. 199-202 
504 |a Pesce, A., A novel two-over-two a-helical sandwich fold is characteristic of the truncated hemoglobin family (2000) EMBO J., 19, pp. 2424-2434 
504 |a Pesce, A., Structural characterization of a group II 2/2 hemoglobin from the plant pathogen Agrobacterium tumefaciens (2011) Biochimica et Biophysica Acta-Proteins and Proteomics, 1814, pp. 810-816 
504 |a Potapov, V., Data-driven prediction and design of bZIP coiled-coil interactions (2015) PLoS Comput. Biol., 11, p. e1004046 
504 |a Pucci, F., Rooman, M., Stability curve prediction of homologous proteins using temperature-dependent statistical potentials (2014) PLoS Comput. Biol., 10, p. e1003689 
504 |a (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, , R Core Team,Vienna, Austria 
504 |a Scherlis, D., Simulation of heme using DFT U: A step toward accurate spin-state energetics (2007) J. Phys. Chem. B, 111, pp. 7384-7391 
504 |a Scott, E.E., Mapping the pathways for O2 entry into and exit from myoglobin (2001) J. Biol. Chem., 276, pp. 5177-5188 
504 |a Silk, D., Model selection in systems biology depends on experimental design (2014) PLoS Comput. Biol., 10, p. e1003650 
504 |a Sotomayor, M., Schulten, K., Single-molecule experiments in vitro and in silico (2007) Science, 316, pp. 1144-1148 
504 |a Strickland, N., Harvey, J.N., Spin-forbidden ligand binding to the ferrous-heme group: Ab initio and DFT studies (2007) J. Phys. Chem. B, 111, pp. 841-852 
504 |a Watts, R., A hemoglobin from plants homologous to truncated hemoglobins of microorganisms (2001) Proc. Natl. Acad. Sci. U. S. A, 98, pp. 10119-10124 
504 |a Wilk, M.B., Gnanadesikan, R., Probability plotting methods for the analysis of data (1968) Biometrika (Biometrika Trust), 55, pp. 1-17 
504 |a Wittenberg, J.B., Truncated hemoglobins: A new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants (2002) J. Biol. Chem., 277, pp. 871-874 
504 |a Yang, F., Phillips, G.N., Jr., Crystal structures of CO-, deoxy-and met-myoglobins at various pH values (1996) J. Mol. Biol., 256, pp. 762-774 
520 3 |a Motivation: Hemeproteins have many diverse functions that largely depend on the rate at which they uptake or release small ligands, like oxygen. These proteins have been extensively studied using either simulations or experiments, albeit only qualitatively and one or two proteins at a time. Results: We present a physical-chemical model, which uses data obtained exclusively from computer simulations, to describe the uptake and release of oxygen in a family of hemeproteins, called truncated hemoglobins (trHbs). Through a rigorous statistical analysis we demonstrate that our model successfully recaptures all the reported experimental oxygen association and dissociation kinetic rate constants, thus allowing us to establish the key factors that determine the rates at which these hemeproteins uptake and release oxygen. We found that internal tunnels as well as the distal site water molecules control ligand uptake, whereas oxygen stabilization by distal site residues controls ligand release. Because these rates largely determine the functions of these hemeproteins, these approaches will also be important tools in characterizing the trHbs members with unknown functions. © 2016 The Author 2016.  |l eng 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad De Buenos Aires, Argentina 
593 |a Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
593 |a Depto. de Quim. Biol. e Inst. de Quimica Biologica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a HEMOPROTEIN 
690 1 0 |a LIGAND 
690 1 0 |a OXYGEN 
690 1 0 |a TRUNCATED HEMOGLOBIN 
690 1 0 |a KINETICS 
690 1 0 |a METABOLISM 
690 1 0 |a HEMEPROTEINS 
690 1 0 |a KINETICS 
690 1 0 |a LIGANDS 
690 1 0 |a OXYGEN 
690 1 0 |a TRUNCATED HEMOGLOBINS 
700 1 |a Szretter, M.E. 
700 1 |a Sued, M. 
700 1 |a Martí, M.A. 
700 1 |a Estrin, D.A. 
700 1 |a Boechi, L. 
773 0 |d Oxford University Press, 2016  |g v. 32  |h pp. 1805-1813  |k n. 12  |p Bioinformatics  |x 13674803  |t Bioinformatics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976511301&doi=10.1093%2fbioinformatics%2fbtw083&partnerID=40&md5=3fe619d6b507fe11481cf51f3f7d823c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1093/bioinformatics/btw083  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13674803_v32_n12_p1805_Bustamante  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13674803_v32_n12_p1805_Bustamante  |y Registro en la Biblioteca Digital 
961 |a paper_13674803_v32_n12_p1805_Bustamante  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76872