Predictability of the tropospheric circulation in the southern hemisphere from CHFP models
An assessment of the predictability and prediction skill of the tropospheric circulation in the Southern Hemisphere was done. The analysis is based on seasonal forecasts of geopotential heights at 200, 500 and 850 hPa, for austral summer and winter from 11 models participating in the Climate Histori...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Springer Verlag
2016
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 10339caa a22009137a 4500 | ||
|---|---|---|---|
| 001 | PAPER-15916 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204646.0 | ||
| 008 | 190411s2016 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84931360489 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Osman, M. | |
| 245 | 1 | 0 | |a Predictability of the tropospheric circulation in the southern hemisphere from CHFP models |
| 260 | |b Springer Verlag |c 2016 | ||
| 270 | 1 | 0 | |m Osman, M.; Centro de Investigaciones del Mar y la Atmósfera (CIMA), CONICET-UBA, DCAO/FCEN, UMIIFAECI/CNRSArgentina; email: osman@cima.fcen.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Arora, V., Scinocca, J., Boer, G., Christian, J., Denman, K.L., Flato, G., Kharin, V., Merryfield, W., Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases (2011) Geophys Res Lett, 38 | ||
| 504 | |a Delsole, T., Kumar, A., Jha, B., Potential seasonal predictability: Comparison between empirical and dynamical model estimates (2013) Geophys Res Lett, 40, pp. 3200-3206 | ||
| 504 | |a Eade, R., Smith, D., Scaife, A., Wallace, E., Dunstone, N., Hermanson, L., Robinson, N., Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? (2014) Geophys Res Lett, 41, pp. 5620-5628 | ||
| 504 | |a Gueremy, J.F., Deque, M., Brau, A., Piedelievre, J.P., Actual and potential skill of seasonal predictions using the CNRM contribution to DEMETER: Coupled versus uncoupled model (2005) Tellus, 57A, pp. 308-319 | ||
| 504 | |a Jha, B., Kumar, A., A comparative analysis of change in the first and second moment of the PDF of seasonal mean 200-mb heights with ENSO SSTs (2009) J Clim, 22, pp. 1412-1423 | ||
| 504 | |a Kalnay, The NCEP/NCAR 40-year reanalysis project (1996) Bull am Meteorol Soc, 77, pp. 437-470 | ||
| 504 | |a Kim, H.M., Webster, P.J., Curry, J.A., Seasonal prediction skill of ECMWF System 4 and NCEPCFSv2 retrospective forecast for the Northern Hemisphere winter (2012) Clim Dyn, 39, pp. 2957-2973 | ||
| 504 | |a Kirtman, B., Pirani, A., The state of the art of seasonal prediction: Outcomes and recommendations from the First World Climate Research Program Workshop on seasonal prediction (2009) Bull am Meteorol Soc, 90, pp. 455-458 | ||
| 504 | |a Kumar, A., Hoerling, M.P., Annual cycle of Pacific-North American seasonal predictability associated with different phases of ENSO (1998) J Clim, 11, pp. 3295-3308 | ||
| 504 | |a Kumar, A., Jha, B., Zhang, Q., Bounoua, L., A new methodology for estimating the unpredictable component of seasonal atmospheric variability (2007) J Clim, 20, pp. 3888-3901 | ||
| 504 | |a Kumar, A., Peng, P., Chen, M., Is there a relationship between potential and actual skill? (2014) Mon Weather Rev, 142, pp. 2220-2227 | ||
| 504 | |a Lee, J.Y., Wang, B., Ding, Q., Ha, K.J., Ahn, J.B., Kumar, A., Stern, B., Alves, O., How predictable is the northern hemisphere summer upper-tropospheric circulation? (2011) Clim Dyn, 37, pp. 1189-1203 | ||
| 504 | |a Lim, E.P., Hendon, H.H., Rashid, H., Seasonal predictability of the southern annular mode due to its association with ENSO (2013) J Clim, 26, pp. 8037-8054 | ||
| 504 | |a Lorenz, E.N., Atmospheric predictability experiments with a large numerical model (1982) Tellus, 34, pp. 505-513 | ||
| 504 | |a Maclachlan, C., Arribas, A., Peterson, K.A., Maidens, A., Fereday, D., Scaife, A.A., Gordon, M., Madec, G., Global seasonal forecast system version 5 (GloSea5): A high resolution seasonal forecast system (2014) Q J R Meteorol Soc | ||
| 504 | |a Molteni, F., Stockdale, T., Balmaseda, M., Balsamo, G., Buizza, R., Ferranti, L., Magnusson, L., Vitart, F., The new ECMWF seasonal forecast system (System 4) (2011) ECMWF Technical Memorandum, p. 656 | ||
| 504 | |a (2010) Assessment of Intraseasonal to Interannual Climate Prediction and Predictability, p. 192. , National Research Council, The National Academies Press, Washington | ||
| 504 | |a Palmer, T.N., Doblas-Reyes, F.J., Hagedorn, R., Alessandri, A., Gualdi, S., Ersen, U., Feddersen, H., Thomson, M.C., Development of a European multi model ensemble system for seasonal-tointerannual prediction (Demeter) (2004) Bull am Meteorol Soc, 85, pp. 853-872 | ||
| 504 | |a Saha, S., Nadiga, S., Thiaw, C., Wang, J., Wang, W., Zhang, Q., Van Den Dool, H.M., Xie, P., The NCEP climate forecast system (2006) J Clim, 19, pp. 3483-3517 | ||
| 504 | |a Scaife, A.A., Skillful long-range prediction of European and North American winters (2014) Geophys Res Lett, 41, pp. 2514-2519 | ||
| 504 | |a Schubert, S.D., Suarez, M.J., Pegion, P.J., Kistler, M.A., Kumar, A., Predictability of zonal means during boreal summer (2002) J Clim, 15, pp. 420-434 | ||
| 504 | |a Scinocca, J.F., McFarlane, N.A., Lazare, M., Li, J., The CCCma Third generation AGCM and its extension into the middle atmosphere (2008) Atmos Chem Phys, 8, pp. 7055-7074 | ||
| 504 | |a Seviour, W., Hardiman, S.C., Gray, L.J., Butchart, N., Maclachlan, C., Scaife, A.A., Skillful seasonal prediction of the Southern Annular Mode and Antarctic ozone (2014) J Clim, 27, pp. 7462-7474 | ||
| 504 | |a Shukla, S., Kinter, J.L., Predictability of seasonal climate variations: A pedagogical review (2006) Predictability of Weather and Climate, pp. 306-341. , Palmer T, Hagendom R, Cambridge University Press, Cambridge | ||
| 504 | |a Stockdale, T.N., Erson, D., Balmaseda, M.A., Doblas-Reyes, F.J., Ferranti, L., Mogensen, K., Palmer, T.N., Vitart, F., ECMWF seasonal forecast system 3 and its prediction of seasurface temperature (2011) Clim Dyn | ||
| 504 | |a Tang, Y., Lim, H., Moore, A.M., Measuring the potential predictability of ensemble climate predictions (2008) J Geophys Res, 113, pp. D04108 | ||
| 504 | |a Van Den Dool, H., (2007) Empirical Methods in Short-Term Climate Prediction, p. 215. , Oxford University Press, Oxford | ||
| 504 | |a Vera, C., Silvestri, G., Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset (2009) Clim Dyn, 32, pp. 1003-1014 | ||
| 504 | |a Wang, B., Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980-2004) (2009) Clim Dyn, 33, pp. 0930-7575 | ||
| 504 | |a Watanabe, M., Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity (2010) J Clim, 23, pp. 6312-6335 | ||
| 504 | |a (2009) Report of the World Climate Conference-3 Better Climate Information for a Better Future: Conference Statement, , http://www.wmo.int/wcc3/documents/WCC-3_Statement_07-09-09_mods.pdf, World Meteorological Organization, Accessed 11 Aug 2014 | ||
| 504 | |a Wu, R., Kirtman, B.P., Changes in spread and predictability associated with ENSO in an ensemble coupled GCM (2006) J Clim, 19, pp. 4378-4396 | ||
| 504 | |a Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, Y.T., Kitoh, A., A new global climate model of the meteorological research institute: MRI-CGCM3 -model description and basic performance (2012) J Meterol Soc Jpn, 90A, pp. 23-64 | ||
| 504 | |a Zwiers, F.W., Wang, X.L., Sheng, J., Effects of specifying bottom boundary conditions in an ensemble of atmospheric GCM simulations (2000) J Geophys Res Atmos, 105, pp. 7295-7315 | ||
| 520 | 3 | |a An assessment of the predictability and prediction skill of the tropospheric circulation in the Southern Hemisphere was done. The analysis is based on seasonal forecasts of geopotential heights at 200, 500 and 850 hPa, for austral summer and winter from 11 models participating in the Climate Historical Forecast Project. It is found that predictability (signal-to-variance ratio) and prediction skill (anomaly correlation) in the tropics is higher than in the extratropics and is also higher in summer than in winter. Both predictability and skill are higher at high than at low altitudes. Modest values of predictability and skill are found at polar latitudes in the Bellinghausen-Amundsen Seas. The analysis of the changes in predictability and prediction skill in ENSO events reveals that both are slightly higher in the El Niño-Southern Oscillation (ENSO) years than in all years, while the spatial patterns of maxima and minima remain unchanged. Changes in signal-to-noise ratio observed are mainly due to signal changes rather than changes in noise. Composites of geopotential heights anomalies for El Niño and La Niña years are in agreement with observations. © Springer-Verlag Berlin Heidelberg 2015. |l eng | |
| 593 | |a Centro de Investigaciones del Mar y la Atmósfera (CIMA), CONICET-UBA, DCAO/FCEN, UMIIFAECI/CNRS, Buenos Aires, Argentina | ||
| 593 | |a Institucio Catalana de Recerca i EstudisAvançats (ICREA), Barcelona, Spain | ||
| 593 | |a Institut Català de Ciències del Clima (IC3), Barcelona, Spain | ||
| 593 | |a Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS), Barcelona, Spain | ||
| 690 | 1 | 0 | |a EL NIÑO SOUTHERN OSCILLATION |
| 690 | 1 | 0 | |a GEOPOTENTIAL HEIGHTS |
| 690 | 1 | 0 | |a SEASONAL PREDICTABILITY |
| 690 | 1 | 0 | |a SOUTHERN HEMISPHERE |
| 690 | 1 | 0 | |a ATMOSPHERIC CIRCULATION |
| 690 | 1 | 0 | |a CLIMATE PREDICTION |
| 690 | 1 | 0 | |a EL NINO-SOUTHERN OSCILLATION |
| 690 | 1 | 0 | |a GEOPOTENTIAL |
| 690 | 1 | 0 | |a SOUTHERN HEMISPHERE |
| 690 | 1 | 0 | |a TROPOSPHERE |
| 690 | 1 | 0 | |a AMUNDSEN SEA |
| 690 | 1 | 0 | |a BELLINGSHAUSEN SEA |
| 690 | 1 | 0 | |a SOUTHERN OCEAN |
| 700 | 1 | |a Vera, C.S. | |
| 700 | 1 | |a Doblas-Reyes, F.J. | |
| 773 | 0 | |d Springer Verlag, 2016 |g v. 46 |h pp. 2423-2434 |k n. 7-8 |p Clim. Dyn. |x 09307575 |w (AR-BaUEN)CENRE-567 |t Climate Dynamics | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84931360489&doi=10.1007%2fs00382-015-2710-2&partnerID=40&md5=3366f1b780d0454e73167c2ccbc07e4e |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00382-015-2710-2 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_09307575_v46_n7-8_p2423_Osman |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09307575_v46_n7-8_p2423_Osman |y Registro en la Biblioteca Digital |
| 961 | |a paper_09307575_v46_n7-8_p2423_Osman |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 76869 | ||