Thyroid hormones and their membrane receptors as therapeutic targets for T cell lymphomas

Thyroid hormones (THs) are important regulators of metabolism, differentiation and cell proliferation. They can modify the physiology of human and murine T cell lymphomas (TCL). These effects involve genomic mechanisms, mediated by specific nuclear receptors (TR), as well as nongenomic mechanisms, t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cremaschi, G.A
Otros Autores: Cayrol, F., Sterle, H.A, Díaz Flaqué, M.C, Barreiro Arcos, M.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 31217caa a22022697a 4500
001 PAPER-15880
003 AR-BaUEN
005 20230607131905.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84971401663 
024 7 |2 cas  |a cilengitide, 188968-51-6; liothyronine, 6138-47-2, 6893-02-3; thyrotropin, 9002-71-5; thyroxine, 7488-70-2; vasculotropin, 127464-60-2; Receptors, Thyroid Hormone; Thyroid Hormones 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PHMRE 
100 1 |a Cremaschi, G.A. 
245 1 0 |a Thyroid hormones and their membrane receptors as therapeutic targets for T cell lymphomas 
260 |b Academic Press  |c 2016 
270 1 0 |m Cremaschi, G.A.; Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Alicia Moreau de Justo 1600, Argentina; email: graciela_cremaschi@uca.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Oetting, A., Yen, P.M., New insights into thyroid hormone action (2007) Best Pract. Res. Clin. Endocrinol. Metab., 21, pp. 193-208 
504 |a Lazar, M.A., Thyroid hormone action: A binding contract (2003) J. Clin. Invest., 112, pp. 497-499 
504 |a Brent, G.A., Mechanisms of thyroid hormone action (2012) J. Clin. Invest., 122, pp. 3035-3043 
504 |a Cheng, S.Y., Leonard, J.L., Davis, P.J., Molecular aspects of thyroid hormone actions (2010) Endocr. Rev., 31, pp. 139-170 
504 |a Chan, I.H., Privalsky, M.L., A conserved lysine in the thyroid hormone receptor-alpha1 DNA-binding domain, mutated in hepatocellular carcinoma, serves as a sensor for transcriptional regulation (2010) Mol. Cancer Res., 8 (1), pp. 15-23 
504 |a Rosen, M.D., Chan, I.H., Privalsky, M.L., Mutant thyroid hormone receptors (TRs) isolated from distinct cancer types display distinct target gene specificities: A unique regulatory repertoire associated with two renal clear cell carcinomas (2011) Mol. Endocrinol., 25, pp. 1311-1325 
504 |a Davis, P.J., Davis, F.B., Mousa, S.A., Luidens, M.K., Lin, H.Y., Membrane receptor for thyroid hormone: Physiologic and pharmacologic implications (2011) Annu. Rev. Pharmacol. Toxicol., 51, pp. 99-115 
504 |a Davis, P.J., Goglia, F., Leonard, J.L., Nongenomic actions of thyroid hormone (2016) Nat. Rev. Endocrinol., 12 (2), pp. 111-121 
504 |a Bergh, J.J., Lin, H.Y., Lansing, L., Mohamed, S.N., Davis, F.B., Mousa, S., Davis, P.J., Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis (2005) Endocrinology, 146, pp. 2864-2871 
504 |a Sloan, E.K., Pouliot, N., Stanley, K.L., Chia, J., Moseley, J.M., Hards, D.K., Anderson, R.L., Tumor-specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone (2006) Breast Cancer Res., 8, p. R20 
504 |a Pinto, M., Soares, P., Ribatti, D., Thyroid hormone as a regulator of tumor induced angiogenesis (2011) Cancer Lett., 301, pp. 119-126 
504 |a Tang, H.Y., Lin, H.Y., Zhang, S., Davis, F.B., Davis, P.J., Thyroid hormone causes mitogen-activared protein kinase-dependent phosphorylation of the nuclear estrogen receptor (2004) Endocrinology, 145, pp. 3265-3272 
504 |a Lin, H.Y., Tang, H.Y., Shih, A., Keating, T., Cao, G., Davis, P.J., Davis, F.B., Thyroid hormone is a MAPK-dependent growth factor for thyroid cancer cells and is anti-apoptotic (2007) Steroids, 72 (2), pp. 180-187 
504 |a Lin, H.Y., Sun, M., Tang, H.Y., Lin, C., Luidens, M.K., Mousa, S.A., Incerpi, S., Davis, P.J., L-Thyroxine vs. 3,5,3′-triiodo-l-thyronine and cell proliferation: Activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase (2009) Am. J. Physiol. Cell Physiol., 296, pp. C980-C991 
504 |a Meng, R., Tang, H.Y., Westfall, J., London, D., Cao, J.H., Mousa, S.A., Luidens, M., Lin, H.Y., Crosstalk between integrin αvβ3 and estrogen receptor-α is involved in thyroid hormone-induced proliferation in human lung carcinoma cells (2011) PLoS One, 6, p. e27547 
504 |a Moriggi, G., Verga Falzacappa, C., Mangialardo, C., Michienzi, S., Stigliano, A., Brunetti, E., Toscano, V., Misiti, S., Thyroid hormones (T3 and T4): Dual effect on human cancer cell proliferation (2011) Anticancer Res., 31, pp. 89-96 
504 |a Jaffiol, C., Baldet, L., Torresani, J., Bismuth, J., Papachristou, C., A case of hypersensitivity to thyroid hormones with normally functioning thyroid gland and increased nuclear triiodothyronine receptors (1990) J. Endocrinol. Invest., 13, pp. 839-845 
504 |a Filipcík, P., Brtko, J., Rauová, L., Sedláková, V., Distribution of triiodothyronine nuclear receptors during the cell cycle in mouse leukemia cells (1992) Folia Biol. (Praha), 38, pp. 332-339 
504 |a Meier-Heusler, S., Pernin, A., Liang, H., Goumaz, M.O., Burger, A.G., Meier, C.A., Quantitation of beta 1 triiodothyronine receptor mRNA in human tissues by competitive reverse transcription polymerase chain reaction (1995) J. Endocrinol. Invest., 18, pp. 767-773 
504 |a Barreiro Arcos, M.L., Sterle, H.A., Paulazo, M.A., Valli, E., Klecha, A.J., Isse, B., Pellizas, C.G., Cremaschi, G.A., Cooperative nongenomic and genomic actions on thyroid hormone mediated-modulation of T cell proliferation involve up-regulation of thyroid hormone receptor and inducible nitric oxide synthase expression (2011) J. Cell. Physiol., 226, pp. 3208-3218 
504 |a Cayrol, F., Díaz Flaqué, M.C., Fernando, T., Yang, S.N., Sterle, H.A., Bolontrade, M., Amorós, M., Cremaschi, G.A., Integrin αvβ3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells (2015) Blood, 125, pp. 841-851 
504 |a Fabris, N., Mocchegiani, E., Provinciali, M., Pituitary-thyroid axis and immune system: A reciprocal neuroendocrine-immune interaction (1995) Horm. Res., 43, pp. 29-38 
504 |a Genaro, A.M., Klecha, A.J., Frick, L.R., Barreiro Arcos, M.L., Cremaschi, G.A., Thyroid hormone modulation of immunity. Its participation in chronic stress-induced immune alterations (2010) Curr. Immunol. Rev., 6, pp. 339-347 
504 |a De Vito, P., Incerpi, S., Pedersen, J., Luly, P., Davis, F., Davis, P., Thyroid hormones as modulators of immune activities at the cellular level (2011) Thyroid, 21, pp. 879-890 
504 |a Roksandić, D., Radovanović, A., Danilović Luković, J., Marković Kovačević Filipović, D.M., Čolić, M., Stereological and immunohistochemical study of the spleen in hypothyroid juvenile rats (2015) Acta Veterinaria, 65, pp. 246-259 
504 |a Chatterjee, S., Chandel, A.S., Immunomodulatory role of thyroid hormones: In vivo effect of thyroid hormones on the blastogenic response of lymphoid tissues (1983) Acta Endocrinol. (Copenh.), 103 (1), pp. 95-100 
504 |a Klecha, A.J., Genaro, A.M., Lysionek, A.E., Caro, R.A., Coluccia, G.A., Cremaschi, G.A., Experimental evidence pointing to the bidirectional interaction between the immune system and the thyroid axis (2000) Int. J. Immunopharmacol., 22, pp. 491-500 
504 |a Klecha, A.J., Barreiro Arcos, M.L., Genaro, A.M., Gorelik, G., Silberman, D.M., Caro, R., Cremaschi, G.A., Different mitogen-mediated beta-adrenergic receptor modulation in murine T lymphocytes depending on the thyroid status (2005) Neuroimmunomodulation, 12, pp. 92-99 
504 |a Klecha, A.J., Genaro, A.M., Gorelik, G., Barreiro Arcos, M.L., Silberman, M.D., Schuman, M., Garcia, S.I., Cremaschi, G.A., Integrative study of hypothalamus-pituitary-thyroid-immune system interaction: Thyroid hormone mediated modulation of lymphocyte activity through the protein kinase C signaling pathway (2006) J. Endocrinol., 189, pp. 45-55 
504 |a Bendyug, G.D., Grinevich, Y.A., Khranovskaya, N.N., Fil'Chakov, F.V., Yugrinova, L.G., Kad'Kalenko, A.G., The state of the immune system in thyroidectomized rats (2003) Bull. Exp. Biol. Med., 135, pp. 154-157 
504 |a El-Shaikh, K.A., Gabry, M.S., Othman, G.A., Recovery of age-dependent immunological deterioration in old mice by thyroxine treatment (2006) J. Anim. Physiol. Anim. Nutr. (Berl.), 90, pp. 244-254 
504 |a Watanabe, W., Shimizu, T., Hino, A., Kurokawa, M., A new assay system for evaluation of developmental immunotoxicity of chemical compounds using respiratory syncytial virus infection to offspring mice (2008) Environ. Toxicol. Pharmacol., 25, pp. 69-74 
504 |a Schoenfeld, P.S., Myers, J.W., Myers, L., La Rocque, J.C., Suppression of cell-mediated immunity in hypothyroidism (2005) South Med. J., 88, pp. 347-349 
504 |a Jafarzadeh, A., Poorgholami, M., Izadi, N., Nemati, M., Rezayati, M., Immunological and hematological changes in patients with hyperthyroidism or hypothyroidism (2010) Clin. Invest. Med., 33, pp. E271-E279 
504 |a Stagi, S., Azzari, C., Bindi, G., Galluzzi, F., Nanni, S., Salti, R., Vierucci, A., Undetectable serum IgA and low IgM concentration in children with congenital hypothyroidism (2005) Clin. Immunol., 116, pp. 94-98 
504 |a Collazos, J., Ibarra, S., Mayo, J.A., Thyroid hormones in HIV-infected patients in the highly active antiretroviral therapy era: Evidence of an interrelation between the thyroid axis and the immune system (2003) AIDS, 17, pp. 763-765 
504 |a Ho, H.C., Chapital, A.D., Yu, M., Hypothyroidism and adrenal insufficiency in sepsis and hemorrhagic shock (2004) Arch. Surg., 139, pp. 1199-1203 
504 |a Afhami, S., Haghpanah, V., Heshmat, R., Rasoulinejad, M., Izadi, M., Lashkari, A., Tavangar, S.M., Larijani, B., Assessment of the factors involving in the development of hypothyroidism in HIV-infected patients: A case-control study (2007) Infection, 35, pp. 334-338 
504 |a Nandakumar, D.N., Koner, B.C., Vinayagamoorthi, R., Nanda, N., Negi, V.S., Goswami, K., Bobby, Z., Hamide, A., Activation of NF-κB in lymphocytes and increase in serum immunoglobulin in hyperthyroidism: Possible role of oxidative stress (2008) Immunobiology, 213, pp. 409-415 
504 |a Bloise, F.F., Oliveira, F.L., Nobrega, A.F., Vasconcellos, R., Cordeiro, A., Paiva, L.S., Taub, D.D., Mello-Coelho, V., High levels of circulating triiodothyronine induce plasma cell differentiation (2014) J. Endocrinol., 220, pp. 305-317 
504 |a Goronzy, J.J., Fang, F., Cavanagh, M.M., Qi, Q., Weyand, C.M., Naive T cell maintenance and function in human aging (2015) J. Immunol., 194, pp. 4073-4080 
504 |a Yeap, B.B., Hormones and health outcomes in aging men (2013) Exp. Gerontol., 48, pp. 677-681 
504 |a Hodkinson, C.F., Simpson, E.E., Beattie, J.H., O'Connor, J.M., Campbell, D.J., Strain, J.J., Wallace, J.M., Preliminary evidence of immune function modulation by thyroid hormones in healthy men and women aged 55-70 years (2009) J. Endocrinol., 202, pp. 55-63 
504 |a Barreiro Arcos, M.L., Klecha, A.J., Genaro, A.M., Cremaschi, G.A., Immune system modulation by thyroid axis includes direct genomic and nongenomic actions of thyroid hormones on immune cells (2010) Immunol. Endocr. Metab. Agents Med. Chem., 10, pp. 1-10 
504 |a De Vito, P., Balducci, V., Leone, S., Percario, Z., Mangino, G., Davis, P.J., Davis, F.B., Incerpi, S., Nongenomic effects of thyroid hormones on the immune system cells: New targets, old players (2012) Steroids, 77, pp. 988-995 
504 |a Mezosi, E., Szabo, J., Nagy, E.V., Borbely, A., Varga, E., Paragh, G., Varga, Z., Nongenomic effect of thyroid hormone on free-radical production in human polymorphonuclear leukocytes (2005) J. Endocrinol., 185, pp. 121-129 
504 |a Chen, Y., Sjölinder, M., Wang, X., Altenbacher, G., Hagner, M., Berglund, P., Gao, Y., Sjölinder, H., Thyroid hormone enhances nitric oxide-mediated bacterial clearance and promotes survival after meningococcal infection (2012) PLoS One, 7, p. e41445 
504 |a Mascanfroni, I., Montesinos, M.M., Susperreguy, S., Cervi, L., Ilarregui, J.M., Ramseyer, V.D., Masini-Repiso, A.M., Pellizas, C.G., Control of dendritic cell maturation and function by triiodothyronine (2008) FASEB J., 22, pp. 1032-1042 
504 |a Mascanfroni, I.D., Montesinos, M.M., Alamino, V.A., Susperreguy, S., Nicola, J.P., Ilarregui, J.M., Masini-Repiso, A.M., Pellizas, C.G., Nuclear factor (NF)-kappaB-dependent thyroid hormone receptor beta1 expression controls dendritic cell function via Akt signaling (2010) J. Biol. Chem., 285, pp. 9569-9582 
504 |a Barreiro Arcos, M.L., Gorelik, G., Klecha, A., Genaro, A.M., Cremaschi, G.A., Thyroid hormones increase inducible nitric oxide synthase gene expression downstream from PKC-zeta in murine tumor T lymphocytes (2006) Am. J. Physiol. Cell Physiol., 291 (2), pp. C327-C336 
504 |a Jaffe, E.S., Harris, N.L., Stein, H., Isaacson, P.G., Classification of lymphoid neoplasms: The microscope as a tool for disease discovery (2008) Blood, 112, pp. 4384-4399 
504 |a Gru, A.A., Pathology of T-cell lymphomas: Diagnosis and biomarker discovery (2015) Cancer Treat Res., 165, pp. 51-95 
504 |a Boffetta, P.I., Epidemiology of adult non-Hodgkin lymphoma (2011) Ann. Oncol., 22, pp. iv27-iv31 
504 |a Boi, M., Zucca, E., Inghirami, G., Bertoni, F., Advances in understanding the pathogenesis of systemic anaplastic large cell lymphomas (2015) Br. J. Haematol., 168, pp. 771-783 
504 |a Desimone, J.A., Sodha, P., Ignatova, D., Dummer, R., Cozzio, A., Guenova, P., Recent advances in primary cutaneous T-cell lymphoma (2015) Curr. Opin. Oncol., 27, pp. 128-133 
504 |a Singh, V., Singh, S.M., Progressive tumor growth-associated altered tumor microenvironment: Implications in a tumor stage-dependent modulation in survival of a murine T cell lymphoma (2009) J. Cancer Res. Clin. Oncol., 135, pp. 1015-1024 
504 |a Barreiro Arcos, M.L., Sterle, H.A., Vercelli, C., Valli, E., Cayrol, M.F., Klecha, A.J., Paulazo, M.A., Cremaschi, G.A., Induction of apoptosis in T lymphoma cells by long-term treatment with thyroxine involves PKCζ nitration by nitric oxide synthase (2013) Apoptosis, 18, pp. 1376-1390 
504 |a Sterle, H.A., Valli, E., Cayrol, F., Paulazo, M.A., Martinel Lamas, D.J., Diaz Flaqué, M.C., Klecha, A.J., Barreiro Arcos, M.L., Thyroid status modulates T lymphoma growth via cell cycle regulatory proteins and angiogenesis (2014) J. Endocrinol., 222, pp. 243-255 
504 |a Glinskii, A.B., Glinsky, G.V., Lin, H.Y., Tang, H.Y., Sun, M., Davis, F.B., Luidens, M.K., Davis, P.J., Modification of survival pathway gene expression in human breast cancer cells by tetraiodothyroacetic acid (tetrac) (2009) Cell Cycle, 8, pp. 3562-3570 
504 |a Mousa, S.A., Lin, H.Y., Tang, H.Y., Hercbergs, A., Luidens, M.K., Davis, P.J., Modulation of angiogenesis by thyroid hormone and hormone analogues: Implications for cancer management (2014) Angiogenesis, 17, pp. 463-469 
504 |a Hercbergs, A.H., Ashur-Fabian, O., Garfield, D., Thyroid hormones and cancer: Clinical studies of hypothyroidism in oncology (2010) Curr. Opin. Endocrinol. Diabetes Obes., 17, pp. 432-436 
504 |a Moeller, L.C., Führer, D., Thyroid hormone, thyroid hormone receptors, and cancer: A clinical perspective (2013) Endocr. Relat. Cancer, 20, pp. R19-R29 
504 |a Brown, A.R., Simmen, R.C., Simmen, F.A., The role of thyroid hormone signaling in the prevention of digestive system cancers (2013) Int. J. Mol. Sci., 14, pp. 16240-16257 
504 |a De Sibio, M.T., De Oliveira, M., Moretto, F.C., Olimpio, R.M., Conde, S.J., Luvizon, A.C., Nogueira, C.R., Triiodothyronine and breast cancer (2014) World J. Clin. Oncol., 5 (3), pp. 503-508 
504 |a Ellis, M., Cohen, K., Maman, E.S., Hercbergs, A., Davis, P.J., Ashur-Fabian, O., The involvement of thyroid hormones in cancer (2015) Harefuah, 154, pp. 512-515 
504 |a Ko, A.H., Wang, F., Holly, E.A., Pancreatic cancer and medical history in a population-based case-control study in the San Francisco Bay Area, California (2007) Cancer Causes Control, 18, pp. 809-819 
504 |a Turkyilmaz, A., Eroglu, A., Aydin, Y., Yilmaz, O., Karaoglanoglu, N., A new risk factor in oesophageal cancer aetiology: Hyperthyroidism (2010) Acta Chir. Belg., 110 (5), pp. 533-536 
504 |a Hellevik, A.I., Asvold, B.O., Bjøro, T., Romundstad, P.R., Nilsen, T.I., Vatten, L.J., Thyroid function and cancer risk: A prospective population study (2009) Cancer Epidemiol. Biomarkers Prev., 18, pp. 570-574 
504 |a Lehrer, S., Diamond, E.J., Bajwa, A.M., Kornreich, R., Stagger, S., Stone, N.N., Droller, M.J., Stock, R.G., Association between serum triiodothyronine (T3) level and risk of disease recurrence in men with localized prostate cancer (2001) Prostate Cancer Prostatic Dis., 4 (4), pp. 232-234 
504 |a Tosovic, A., Bondeson, A.G., Bondeson, L., Ericsson, U.B., Malm, J., Manjer, J., Prospectively measured triiodothyronine levels are positively associated with breast cancer risk in postmenopausal women (2010) Breast Cancer Res., 12, p. R33 
504 |a Lehrer, S., Diamond, E.J., Stone, N.N., Droller, M.J., Stock, R.G., Serum triiodothyronine is increased in men with prostate cancer and benign prostatic hyperplasia (2002) J. Urol., 168, pp. 2431-2433 
504 |a Ness, R.B., Grisso, J.A., Cottreau, C., Klapper, J., Vergona, R., Wheeler, J.E., Morgan, M., Schlesselman, J.J., Factors related to inflammation of the ovarian epithelium and risk of ovarian cancer (2000) Epidemiology, 112, pp. 111-117 
504 |a Kang, J.H., Kueck, A.S., Stevens, R., Curhan, G., De Vivo, I., Rosner, B., Alexander, E., Tworoger, S.S., A large cohort study of hypothyroidism and hyperthyroidism in relation to gynecologic cancers (2013) Obstet. Gynecol. Int., , 743721 
504 |a Rennert, G., Rennert, H.S., Pinchev, M., Gruber, S.B., A case-control study of levothyroxine and the risk of colorectal cancer (2010) J. Natl. Cancer Inst., 102, pp. 568-572 
504 |a Boursi, B., Haynes, K., Mamtani, R., Yang, Y.X., Thyroid dysfunction, thyroid hormone replacement and colorectal cancer risk (2015) J. Natl. Cancer Inst., 107, p. djv084 
504 |a Reddy, A., Dash, C., Leerapun, A., Mettler, T.A., Stadheim, L.M., Lazaridis, K.N., Roberts, R.O., Roberts, L.R., Hypothyroidism: A possible risk factor for liver cancer in patients with no known underlying cause of liver disease (2007) Clin. Gastroenterol. Hepatol., 5, pp. 118-123 
504 |a Hassan, M.M., Kaseb, A., Li, D., Patt, Y.Z., Vauthey, J.-N., Thomas, M.B., Curley, S.A., Abbruzzese, J.L., Association between hypothyroidism and hepatocellular carcinoma: A case-control study in the United States (2009) Hepatology, 49, pp. 1563-1570 
504 |a Cristofanilli, M., Yamamura, Y., Kau, S.W., Bevers, T., Strom, S., Patangan, M., Hsu, L., Hortobagyi, G.N., Thyroid hormone and breast carcinoma. Primary hypothyroidism is associated with a reduced incidence of primary breast carcinoma (2005) Cancer, 103, pp. 1122-1128 
504 |a Backwinkel, K., Jackson, A.S., Some features of breast cancer and thyroid deficiency. Report of 280 cases (1964) Cancer, 17, pp. 1174-1176 
504 |a Kuijpens, J.L., Nyklíctek, I., Louwman, M.W., Weetman, T.A., Pop, V.J., Coebergh, J.W., Hypothyroidism might be related to breast cancer in post-menopausal women (2005) Thyroid, 15, pp. 1253-1259 
504 |a Mourouzis, I., Tzovaras, A., Armonis, B., Ardavanis, A., Skondra, M., Misitzis, J., Pectasides, D., Pantos, C., Are thyroid hormone and tumor cell proliferation in human breast cancers positive for HER2 associated? (2015) Int. J. Endocrinol., p. 2015. , 765406 
504 |a Angelousi, A.G., Anagnostou, V.K., Stamatakos, M.K., Georgiopoulos, G.A., Kontzoglou, K.C., Mechanisms in endocrinology: Primary HT and risk for breast cancer: A systematic review and meta-analysis (2012) Eur. J. Endocrinol., 166, pp. 373-381 
504 |a Mondul, A.M., Weinstein, S.J., Bosworth, T., Remaley, A.T., Virtamo, J., Albanes, D., Circulating thyroxine, thyroid-stimulating hormone, and hypothyroid status and the risk of prostate cancer (2012) PLoS One, 7 (10), p. e47730 
504 |a Nelson, M., Hercbergs, A., Rybicki, L., Strome, M., Association between development of hypothyroidism and improved survival in patients with head and neck cancer (2006) Arch. Otolaryngol. Head Neck Surg., 132, pp. 1041-1046 
504 |a Hercbergs, A., Spontaneous remission of cancer-a thyroid hormone dependent phenomenon? (1999) Anticancer Res., 19 A (6), pp. 4839-4844 
504 |a Hercbergs, A.A., Goyal, L.K., Suh, J.H., Lee, S., Reddy, C.A., Cohen, B.H., Stevens, G.H., Barnett, G.H., Propylthiouracil-induced chemical hypothyroidism with high-dose tamoxifen prolongs survival in recurrent high grade glioma: A phase I/II study (2003) Anticancer Res., 23 B (1), pp. 617-626 
504 |a Ashur-Fabian, O., Blumenthal, D.T., Bakon, M., Nass, D., Davis, P.J., Hercbergs, A., Long-term response in high-grade optic glioma treated with medically induced hypothyroidism and carboplatin: A case report and review of the literature (2013) Anticancer Drugs, 24, pp. 315-323 
504 |a Vermey, M.L., Marks, G.T., Baldridge, M.G., Effect of thyroid function on MNU-induced mammary (2015) Carcinogenesis Zool. Sci., 32, pp. 272-277. , http://dx.doi.org/10.2108/zs140124 
504 |a Kumar, M.S., Chiang, T., Deodhar, S.D., Enhancing effect of thyroxine on tumor growth and metastases in syngeneic mouse tumor systems (1979) Cancer Res., 39 (9), pp. 3515-3518 
504 |a Mishkin, S.Y., Pollack, R., Yalovsky, M.A., Morris, H.P., Mishkin, S., Inhibition of local and metastatic hepatoma growth and prolongation of survival after induction of hypothyroidism (1981) Cancer Res., 41, pp. 3040-3045 
504 |a Frau, C., Loi, R., Petrelli, A., Perra, A., Menegon, S., Kowalik, M.A., Pinna, S., Columbano, A., Local hypothyroidism favors the progression of preneoplastic lesions to hepatocellular carcinoma in rats (2015) Hepatology, 61, pp. 249-259 
504 |a Kim, W.G., Cheng, S.Y., Thyroid hormone receptors and cancer (2013) Biochim. Biophys. Acta., 1830, pp. 3928-3936 
504 |a Theodossiou, C., Schwarzenberger, P., Propylthiouracil reduces xenograft tumor growth in an athymic nude mouse prostate cancer model (2000) Am. J. Med. Sci., 319, pp. 96-99 
504 |a Martinez-Iglesias, O., Garcia-Silva, S., Regadera, J., Aranda, A., Hypothyroidism enhances tumor invasiveness and metastasis development (2009) PLoS One, 4, p. e6428 
504 |a Sterle, H.A., Barreiro Arcos, M.L., Valli, E., Paulazo, M.A., Méndez Huergo, S.P., Blidner, A.G., Cayrol, F., Cremaschi, G.A., The thyroid status reprograms T cell lymphoma growth and modulates immune cell frequencies (2015) J. Mol. Med. (Berl.), , (in press) 
504 |a Yadav, L., Puri, N., Rastogi, V., Satpute, P., Sharma, V., Tumour angiogenesis and angiogenic inhibitors: A review (2015) J. Clin. Diagn. Res., 9, pp. XE01-XE05 
504 |a Mas-Moruno, C., Rechenmacher, F., Kessler, H., Cilengitide: The first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation (2010) Anticancer Agents Med. Chem., 10, pp. 753-768 
504 |a Stupp, R., Hegi, M.E., Gorlia, T., Erridge, S.C., Perry, J., Hong, Y.K., Aldape, K.D., Weller, M., Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): A multicentre, randomised, open-label, phase 3 trial (2014) Lancet Oncol., 15, pp. 1100-1108 
504 |a Friess, H., Langrehr, J.M., Oettle, H., Raedle, J., Niedergethmann, M., Dittrich, C., Hossfeld, D.K., Nippgen, J., A randomized multi-center phase II trial of the angiogenesis inhibitor cilengitide (EMD 121974) and gemcitabine compared with gemcitabine alone in advanced unresectable pancreatic cancer (2006) BMC Cancer, 6, p. 285 
504 |a Beekman, K.W., Colevas, A.D., Cooney, K., Dipaola, R., Dunn, R.L., Gross, M., Keller, E.T., Hussain, M., Phase II evaluations of Cilengitide in asymptomatic patients with androgen-independent prostate cancer: Scientific rationale and study design (2006) Clin. Genitourin. Cancer, 4, pp. 299-302. , http://dx.doi.org/10.3816/CGC.2006.n.012 
504 |a Bradley, D.A., Dunn, R., Ryan, C., Di Paola, R., Smith, D.C., Cooney, K.A., Mathew, P., Hussain, M., EMD121974 (NSC 707544, cilengitide) in asymptomatic metastatic androgen independent prostate cancer (AIPCa) patients (pts): A randomized trial by the prostate cancer clinical trials consortium (NCI 6372) (2007) J. Clin. Oncol., 25, p. 18s. , (suppl; abstr 5137) 
504 |a Sloan, E.K., Pouliot, N., Stanley, K.L., Chia, J., Moseley, J.M., Hards, D.K., Anderson, R.L., Tumor specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone (2006) Breast Cancer Res., 8, p. R20 
504 |a Hercbergs, A., Johnson, R.E., Ashur-Fabian, O., Garfield, D.H., Davis, P.J., Medically induced euthyroid hypothyroxinemia may extend survival in compassionate need cancer patients: An observational study (2015) Oncologist, 20, pp. 72-76 
504 |a Lin, H.Y., Sun, M., Tang, H.Y., Lin, C., Luidens, M.K., Mousa, S.A., Incerpi, S., Davis, P.J., L-Thyroxine vs. 3,5,3-triiodo-l-thyronine and cell proliferation: Activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase (2009) Am. J. Physiol. Cell Physiol., 296, pp. C980-C991 
504 |a Davis, P.J., Lin, H.Y., Sudha, T., Yalcin, M., Tang, H.Y., Hercbergs, A., Leith, J.T., Mousa, S.A., Nanotetrac targets integrin αvβ3 on tumor cells to disorder cell defense pathways and block angiogenesis (2014) Onco Targets Ther., 7, pp. 1619-1624 
504 |a Yalcin, M., Lin, H.Y., Sudha, T., Bharali, D.J., Meng, R., Tang, H.Y., Davis, F.B., Mousa, S.A., Response of human pancreatic cancer cell xenografts to tetraiodothyroacetic acid nanoparticles (2013) Horm. Cancer, 4, pp. 176-185 
520 3 |a Thyroid hormones (THs) are important regulators of metabolism, differentiation and cell proliferation. They can modify the physiology of human and murine T cell lymphomas (TCL). These effects involve genomic mechanisms, mediated by specific nuclear receptors (TR), as well as nongenomic mechanisms, that lead to the activation of different signaling pathways through the activation of a membrane receptor, the integrin αvβ3. Therefore, THs are able to induce the survival and growth of TCL. Specifically, the signaling induced by THs through the integrin αvβ3 activates proliferative and angiogenic programs, mediated by the regulation of the vascular endothelial growth factor (VEGF). The genomic or pharmacologic inhibition of integrin αvβ3 reduces the production of VEGF and induces cell death both in vitro and in xenograft models of human TCL. Here we review the mechanisms involved in the modulation of the physiology of TCL induced by THs, the analysis of the interaction between genomic and nongenomic actions of THs and their contribution to T cell lymphomagenesis. These actions of THs suggest a novel mechanism for the endocrine modulation of the physiopathology of TCL and they provide a potential molecular target for its treatment. © 2016 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACYT 20020130100289BA 
536 |a Detalles de la financiación: National Council for Scientific Research, PIP-CONICET 00275 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT-Raíces 2012-1328, PICT 2008-1858 
536 |a Detalles de la financiación: National Science and Technology Development Agency 
536 |a Detalles de la financiación: This work was supported by the National Research Council of Argentina (PIP-CONICET 00275) (G.A.C.), the University of Buenos Aires (UBACYT 20020130100289BA), the National Agency for Science and Technology (ANPCYT, PICT 2008-1858 and PICT-Raíces 2012-1328) 
593 |a Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Alicia Moreau de Justo 1600, Ciudad Autónoma de Buenos Aires, C1107AAZ, Argentina 
593 |a Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica (FFyB), UBA, Buenos Aires, Argentina 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina 
690 1 0 |a ANGIOGENESIS 
690 1 0 |a INTEGRIN ΑVΒ3 
690 1 0 |a PROLIFERATION 
690 1 0 |a T CELL LYMPHOMA 
690 1 0 |a THYROID HORMONES 
690 1 0 |a CILENGITIDE 
690 1 0 |a LIOTHYRONINE 
690 1 0 |a THYROID HORMONE 
690 1 0 |a THYROID HORMONE RECEPTOR 
690 1 0 |a THYROTROPIN 
690 1 0 |a THYROXINE 
690 1 0 |a VASCULOTROPIN 
690 1 0 |a VITRONECTIN RECEPTOR 
690 1 0 |a THYROID HORMONE 
690 1 0 |a THYROID HORMONE RECEPTOR 
690 1 0 |a CANCER RECURRENCE 
690 1 0 |a CD8+ T LYMPHOCYTE 
690 1 0 |a DRUG TARGETING 
690 1 0 |a GLIOBLASTOMA 
690 1 0 |a HUMAN 
690 1 0 |a HYPERTHYROIDISM 
690 1 0 |a HYPOTHYROIDISM 
690 1 0 |a METASTASIS 
690 1 0 |a NATURAL KILLER CELL 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a REVIEW 
690 1 0 |a SOLID TUMOR 
690 1 0 |a T CELL LYMPHOMA 
690 1 0 |a T-CELL LYMPHOMA CELL LINE 
690 1 0 |a TUMOR ESCAPE 
690 1 0 |a TUMOR GROWTH 
690 1 0 |a TUMOR MICROENVIRONMENT 
690 1 0 |a TUMOR VASCULARIZATION 
690 1 0 |a ANIMAL 
690 1 0 |a GENETICS 
690 1 0 |a GENOMICS 
690 1 0 |a LYMPHOMA, T-CELL 
690 1 0 |a METABOLISM 
690 1 0 |a T LYMPHOCYTE 
690 1 0 |a ANIMALS 
690 1 0 |a GENOMICS 
690 1 0 |a HUMANS 
690 1 0 |a LYMPHOMA, T-CELL 
690 1 0 |a RECEPTORS, THYROID HORMONE 
690 1 0 |a T-LYMPHOCYTES 
690 1 0 |a THYROID HORMONES 
700 1 |a Cayrol, F. 
700 1 |a Sterle, H.A. 
700 1 |a Díaz Flaqué, M.C. 
700 1 |a Barreiro Arcos, M.L. 
773 0 |d Academic Press, 2016  |g v. 109  |h pp. 55-63  |p Pharmacol. Res.  |x 10436618  |w (AR-BaUEN)CENRE-6437  |t Pharmacological Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84971401663&doi=10.1016%2fj.phrs.2016.02.001&partnerID=40&md5=ddc84671ec44358f57208f42fee58cee  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.phrs.2016.02.001  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10436618_v109_n_p55_Cremaschi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10436618_v109_n_p55_Cremaschi  |y Registro en la Biblioteca Digital 
961 |a paper_10436618_v109_n_p55_Cremaschi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76833