Coarse-grained simulations of heme proteins: Validation and study of large conformational transitions

Heme proteins are ubiquitous in nature and perform many diverse functions in all kingdoms of life. Many of these functions are related to large-scale conformational transitions and allosteric processes. Sampling of these large conformational changes is computationally very challenging. In this conte...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ramírez, C.L
Otros Autores: Petruk, A., Bringas, M., Estrin, D.A, Roitberg, A.E, Marti, M.A, Capece, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09728caa a22009137a 4500
001 PAPER-15860
003 AR-BaUEN
005 20230518204641.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84978872446 
024 7 |2 cas  |a heme, 14875-96-8; protein, 67254-75-5; Heme; Proteins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JCTCC 
100 1 |a Ramírez, C.L. 
245 1 0 |a Coarse-grained simulations of heme proteins: Validation and study of large conformational transitions 
260 |b American Chemical Society  |c 2016 
270 1 0 |m Capece, L.; Dto. de Química Inorgánica, Analítica y Química Física, Fac. de Ciencias Exactas y Naturales, Univ. de Buenos Aires/INQUIMAE-CONICETArgentina; email: lula@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Gros, G., Wittenberg, B.A., Jue, T., Myoglobin's Old and New Clothes: From Molecular Structure to Function in Living Cells (2010) J. Exp. Biol., 213, pp. 2713-2725 
504 |a Perutz, M.F., Wilkinson, A.J., Paoli, M., Dodson, G.G., The Stereochemical Mechanism of the Cooperative Effects in Hemoglobin Revisited (1998) Annu. Rev. Biophys. Biomol. Struct., 27, pp. 1-34 
504 |a Danielson, P.B., The Cytochrome P450 Superfamily: Biochemistry, Evolution and Drug Metabolism in Humans (2002) Curr. Drug Metab., 3, pp. 561-597 
504 |a Margoliash, E., Primary Structure and Evolution of Cytochrome C (1963) Proc. Natl. Acad. Sci. U. S. A., 50, pp. 672-679 
504 |a Frauenfelder, H., McMahon, B.H., Fenimore, P.W., Myoglobin: The Hydrogen Atom of Biology and a Paradigm of Complexity (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 8615-8617 
504 |a Saunders, M.G., Voth, G.A., Coarse-Graining Methods for Computational Biology (2013) Annu. Rev. Biophys., 42, pp. 73-93 
504 |a Hills, R.D., Lu, L., Voth, G.A., Multiscale Coarse-Graining of the Protein Energy Landscape (2010) PLoS Comput. Biol., 6, p. e1000827 
504 |a Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P., Marrink, S.-J., The MARTINI Coarse-Grained Force Field: Extension to Proteins (2008) J. Chem. Theory Comput., 4, pp. 819-834 
504 |a Darré, L., MacHado, M.R., Brandner, A.F., González, H.C., Ferreira, S., Pantano, S., SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics (2015) J. Chem. Theory Comput., 11, pp. 723-739 
504 |a Abe, H., Go, N., Noninteracting Local-Structure Model of Folding and Unfolding Transition in Globular Proteins. II. Application to Two-Dimensional Lattice Proteins (1981) Biopolymers, 20, pp. 1013-1031 
504 |a Ward, A.B., Guvench, O., Hills, R.D., Coarse Grain Lipid-protein Molecular Interactions and Diffusion with MsbA Flippase (2012) Proteins: Struct., Funct., Genet., 80, pp. 2178-2190 
504 |a Pesce, A., Bolognesi, M., Bocedi, A., Ascenzi, P., Dewilde, S., Moens, L., Hankeln, T., Burmester, T., Neuroglobin and Cytoglobin. Fresh Blood for the Vertebrate Globin Family (2002) EMBO Rep., 3, pp. 1146-1151 
504 |a Berendsen, H., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R., Molecular-Dynamics with Coupling to an External Bath (1984) J. Chem. Phys., 81, p. 3684 
504 |a Capece, L., Boechi, L., Perissinotti, L.L., Arroyo-Mañez, P., Bikiel, D.E., Smulevich, G., Marti, M.A., Estrin, D.A., Small Ligand-Globin Interactions: Reviewing Lessons Derived from Computer Simulation (2013) Biochim. Biophys. Acta, Proteins Proteomics, 1834, pp. 1722-1738 
504 |a Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., Estrin, D.A., Nitric Oxide Reactivity with Globins as Investigated through Computer Simulation (2008) Methods Enzymol., 437, pp. 477-498 
504 |a Case, D.A., Darden, T.A., Cheatham, T.E., III, Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Kollman, P.A., (2010), AMBER 11, University of California, San Francisco; Yang, F., Phillips, Jr.G.N., Crystal Structures of CO-, Deoxy- and Met-Myoglobins at Various pH Values (1996) J. Mol. Biol., 256, pp. 762-774 
504 |a Pesce, A., Dewilde, S., Nardini, M., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., Bolognesi, M., Human Brain Neuroglobin Structure Reveals a Distinct Mode of Controlling Oxygen Affinity (2003) Structure, 11, pp. 1087-1095 
504 |a Fermi, G., Perutz, M.F., Shaanan, B., Fourme, R., The Crystal Structure of Human Deoxyhaemoglobin at 1.74 A Resolution (1984) J. Mol. Biol., 175, pp. 159-174 
504 |a Shaanan, B., Structure of Human Oxyhaemoglobin at 2.1 A Resolution (1983) J. Mol. Biol., 171, pp. 31-59 
504 |a Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., Shaw, D.E., Improved Side-Chain Torsion Potentials for the Amber ff99SB Protein Force Field (2010) Proteins: Struct., Funct., Genet., 78, pp. 1950-1958 
504 |a Capece, L., Marti, M.A., Bidon-Chanal, A., Nadra, A., Luque, F.J., Estrin, D.A., High Pressure Reveals Structural Determinants for Globin Hexacoordination: Neuroglobin and Myoglobin Cases (2009) Proteins: Struct., Funct., Genet., 75, pp. 885-894 
504 |a Boron, I., Capece, L., Pennacchietti, F., Wetzler, D.E., Bruno, S., Abbruzzetti, S., Chisari, L., Nadra, A.D., Engineered Chimeras Reveal the Structural Basis of Hexacoordination in Globins: A Case Study of Neuroglobin and Myoglobin (2015) Biochim. Biophys. Acta, Gen. Subj., 1850, pp. 169-177 
504 |a Amadei, A., Linssen, A.B., Berendsen, H.J., Essential Dynamics of Proteins (1993) Proteins: Struct., Funct., Genet., 17, pp. 412-425 
504 |a Perutz, M.F., Mathews, F.S., An X-Ray Study of Azide Methaemoglobin (1966) J. Mol. Biol., 21, pp. 199-202 
504 |a Boechi, L., Arrar, M., Martí, M.A., Olson, J.S., Roitberg, A.E., Estrin, D.A., Hydrophobic Effect Drives Oxygen Uptake in Myoglobin via Histidine E7 (2013) J. Biol. Chem., 288, pp. 6754-6762 
504 |a Fischer, S., Olsen, K.W., Nam, K., Karplus, M., Unsuspected Pathway of the Allosteric Transition in Hemoglobin (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 5608-5613 
504 |a Hub, J.S., Kubitzki, M.B., De Groot, B.L., Spontaneous Quaternary and Tertiary T-R Transitions of Human Hemoglobin in Molecular Dynamics Simulation (2010) PLoS Comput. Biol., 6, p. e1000774 
504 |a Jones, E.M., Balakrishnan, G., Spiro, T.G., Heme Reactivity Is Uncoupled from Quaternary Structure in Gel-Encapsulated Hemoglobin: A Resonance Raman Spectroscopic Study (2012) J. Am. Chem. Soc., 134, pp. 3461-3471 
504 |a Cammarata, M., Levantino, M., Wulff, M., Cupane, A., Unveiling the Timescale of the R-T Transition in Human Hemoglobin (2010) J. Mol. Biol., 400, pp. 951-962 
520 3 |a Heme proteins are ubiquitous in nature and perform many diverse functions in all kingdoms of life. Many of these functions are related to large-scale conformational transitions and allosteric processes. Sampling of these large conformational changes is computationally very challenging. In this context, coarse-grain simulations emerge as an efficient approach to explore the conformational landscape. In this work, we present a coarse-grained model of the heme group and thoroughly validate this model in different benchmark examples, which include the monomeric heme proteins myoglobin and neuroglobin and the tetrameric human hemoglobin where we evaluated the method's ability to explore conformational changes (as the formation of hexacoordinated species) and allosteric transitions (as the well-known R → T transition). The obtained results are compared with atomistic molecular dynamics simulations. Overall, the results indicate that this approach conserves the essential dynamical information on different allosteric processes. © 2016 American Chemical Society.  |l eng 
593 |a Dto. de Química Inorgánica, Analítica y Química Física, Fac. de Ciencias Exactas y Naturales, Univ. de Buenos Aires/INQUIMAE-CONICET, Buenos Aires, C1428EGA, Argentina 
593 |a Dto. de Química Biologica, Fac. de Ciencias Exactas y Naturales, Univ. de Buenos Aires/IQUIBICEN-CONICET, Buenos Aires, C1428EGA, Argentina 
593 |a Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, United States 
690 1 0 |a HEME 
690 1 0 |a PROTEIN 
690 1 0 |a CHEMISTRY 
690 1 0 |a HUMAN 
690 1 0 |a MOLECULAR MODEL 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a REPRODUCIBILITY 
690 1 0 |a HEME 
690 1 0 |a HUMANS 
690 1 0 |a MODELS, MOLECULAR 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a PROTEINS 
690 1 0 |a REPRODUCIBILITY OF RESULTS 
700 1 |a Petruk, A. 
700 1 |a Bringas, M. 
700 1 |a Estrin, D.A. 
700 1 |a Roitberg, A.E. 
700 1 |a Marti, M.A. 
700 1 |a Capece, L. 
773 0 |d American Chemical Society, 2016  |g v. 12  |h pp. 3390-3397  |k n. 7  |p J. Chem. Theory Comput.  |x 15499618  |t Journal of Chemical Theory and Computation 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978872446&doi=10.1021%2facs.jctc.6b00278&partnerID=40&md5=0bc957d92d34bb07e2151ac1ca1fc633  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.jctc.6b00278  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15499618_v12_n7_p3390_Ramirez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15499618_v12_n7_p3390_Ramirez  |y Registro en la Biblioteca Digital 
961 |a paper_15499618_v12_n7_p3390_Ramirez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 76813