Influence of incorporation of starch nanoparticles in PBAT/TPS composite films

Films of PBAT/TPS (poly(butylene adipate-co-terephthalate)/thermoplastic starch) (starch plasticized with glycerol containing citric and stearic acids) without and with 0.6 wt% starch nanoparticles were produced by extrusion. The presence of nanoparticles during the extrusion process led to a higher...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: González Seligra, P.
Otros Autores: Eloy Moura, L., Famá, L., Druzian, J.I, Goyanes, Silvia Nair
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Ltd 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09519caa a22011537a 4500
001 PAPER-15840
003 AR-BaUEN
005 20250423092952.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84969793357 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a González Seligra, P. 
245 1 0 |a Influence of incorporation of starch nanoparticles in PBAT/TPS composite films 
260 |b John Wiley and Sons Ltd  |c 2016 
270 1 0 |m Goyanes, S.; LP & MC, Dep. de Física – IFIBA (CONICET), FCEyN, UBA, Ciudad UniversitariaArgentina; email: sgoyanes@gmail.com 
504 |a Costa, S.S., Druzian, J.I., Machado, B.A.S., Souza, C.O., Guimarães, A.G., (2014) Plos One, 9. , and 
504 |a Chen, G.Q., Martin, K.P., (2012) Chem Rev, 112, pp. 2082-2099. , and 
504 |a Silva, J.B.A., Pereira, F.V., Druzian, J.I., (2012) J Food Sci, 77, pp. N14-N19. , and 
504 |a Famá, L., Rojo, P.G., Bernal, C., Goyanes, S., (2012) Carbohydr Polym, 87, pp. 1989-1993. , and 
504 |a Brandelero, R.P.H., Grossmann, M.V., Yamashita, F., (2012) Carbohydr Polym, 90, pp. 1452-1460. , and 
504 |a Wang, H., Dafu, W., Zheng, A., Xiao, H., (2015) Polym Degrad Stab, 116, pp. 14-22. , and 
504 |a Weng, Y.X., Jin, Y.J., Meng, Q.Y., Wang, L., Zhang, M., Wang, Y.Z., (2013) Polym Test, 32, pp. 918-926. , and 
504 |a Torres, F.G., Troncoso, O.P., Torres, C., Díaz, D.A., Amaya, E., (2011) Int J Biol Macromol, 48, pp. 603-606. , and 
504 |a Arruda, L.C., Magaton, M., Suman Bretas, R.E., Massayoshi Ueki, M., (2015) Polym Test, 43, pp. 27-37. , and 
504 |a Ren, J., Fu, H., Ren, T., Yuan, W., (2009) Carbohydr Polym, 77, pp. 576-582. , and 
504 |a Shirai, M.A., Olivato, J.B., Salomão Garcia, P., Müller, C.M.O., Grossmann, M.V.E., Yamashita, F., (2013) Mater Sci Eng C, 33, pp. 4112-4117. , and 
504 |a Seligra, P.G., Medina Jaramillo, C., Famá, L., Goyanes, S., (2016) Carbohydr Polym, 138, pp. 66-74. , and 
504 |a Medina Jaramillo, C., González Seligra, P., Goyanes, S., Bernal, C., Famá, L., (2015) Starch Stärke, 67, pp. 780-789. , and 
504 |a Famá, L., Bittante, A.M., Sobral, P.J.A., Goyanes, S., Gerschenson, L.N., (2010) Mater Sci Eng C, 30, pp. 853-859. , and 
504 |a Olivato, J.B., Marini, J., Pollet, E., Yamashita, F., Grossmann, M.V.E., Avérous, L., (2015) Carbohydr Polym, 118, pp. 250-256. , and 
504 |a Kalambur, S., Rizvi, S.S.H., (2006) J Plast Film Sheeting, 22, pp. 39-58. , and 
504 |a Mohanty, S., Nayak, S.K., (2009) Int J Plast Technol, 13, pp. 163-185. , and 
504 |a Wei, D., Wang, H., Xiao, H., Zhenga, A., Yang, Y., (2015) Carbohydr Polym, 123, pp. 275-283. , and 
504 |a Le Corre, D., Angellier-Coussy, H., (2014) React Funct Polym, 85, pp. 97-120. , and 
504 |a Salomão Garcia, P., Grossmann, M.V.E., Shirai, M.A., Lazaretti, M.M., Yamashita, F., Mullera, C.M.O., (2014) Ind Crop Prod, 52, pp. 305-312 
504 |a Olivato, J.B., Grossmann, M.V.E., Yamashita, F., Eiras, D., Pessan, L.A., (2012) Carbohydr Polym, 87, pp. 2614-2618. , and 
504 |a Martins, A.B., Santana, R.M.C., (2016) Carbohydr Polym, 135, pp. 79-85. , and 
504 |a Someya, N., Kondo, N., Shibata, M., (2007) J Appl Polym Sci, 106, pp. 730-736. , and 
504 |a Angellier, H., Molina-Boisseau, S., Belgacem, M.N., Dufresne, A., (2005) Langmuir, 21, pp. 2425-2433. , and 
504 |a García, N.L., Ribba, L., Dufresne, A., Aranguren, M., Goyanes, S., (2011) Carbohydr Polym, 84, pp. 203-210. , and 
504 |a Mohanty, S., Nayak, S.K., (2012) J Polym Environ, 20, pp. 195-207. , and 
504 |a Putaux, J.L., Molina-Boisseau, S., Momaur, T., Dufresne, A., (2003) Biomacromol, 4, pp. 1198-1202. , and 
504 |a Condés, M.C., Añon, M.C., Mauri, A.N., Dufresne, A., (2015) Food Hydrocolloids, 47, pp. 146-157. , and 
504 |a Yu, Y., Wang, J., (2007) Food Res Int, 40, pp. 297-303. , and 
504 |a Lamanna, M., Morales, N., García, N.L., Goyanes, S., (2013) Carbohydr Polym, 90, pp. 90-97. , and 
504 |a Silva, J.B.A., Lucas, A.A., Pereira, F., Jose, N.M., Bretas, R., Miranda, C.S., (2012), Processo de preparação de blendas poliméricas ambientalmente degradáveis reforçadas com nanocristais/nanowhiskers de celulose para produção de filmes flexíveis por extrusão, No Registro 011120000389, BR Patent INPI 011120000389, BR102012014512-0; (2002) Annual Book of ASTM, , American Society for Testing and Materials, West Conshohocken, PA 
504 |a Karbowiak, T., Debeaufort, F., Champion, D., Voilley, A., (2006) J Colloid Interface Sci, 294, pp. 400-410. , and 
504 |a (1995) Official Methods of Analysis, , Association of Official Analytical Chemists, Washington, DC 
504 |a Olivato, J.B., Grossmann, M.V.E., Bilck, A.P., Yamashita, F., (2012) Carbohydr Polym, 90, pp. 159-164. , and 
504 |a Nayak, S.K., (2010) Polym Plast Tech Eng, 49, pp. 1406-1418 
504 |a Garcia, N.L., Ribba, L., Dufresne, A., Aranguren, M.I., Goyanes, S., (2009) Macromol Mater Eng, 294, pp. 169-177. , and 
504 |a Kijchavengkul, T., Auras, R., Rubino, M., (2008) Polym Test, 27, pp. 55-60. , and 
504 |a Chiangga, S., Suwannasopon, S., Trivijitkasem, N.S., (2013) Kasetsart J (Nat Sci), 47 (781-789). , and 
504 |a García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S., (2009) Food Res Int, 42, pp. 976-982. , and 
504 |a Al-Itry, R., Lamnawa, K., Maazouz, A., Billon, N., Combeaud, C., (2015) Eur Polym J, 68, pp. 288-301. , and 
504 |a Fukushima, K., Wu, M.H., Bocchini, S., Rasyida, A., Yang, M.C., (2012) Mater Sci Eng C, 32, pp. 1331-1351. , and 
504 |a García, N.L., Lamanna, M., D'Accorso, N., Dufresne, A., Aranguren, M., Goyanes, S., (2012) Polym Degrad Stab, 97, pp. 2021-2026. , and 
504 |a Morales, N.J., Candal, R., Famá, L., Goyanes, S., Rubiolo, G.H., (2015) Carbohydr Polym, 127, pp. 291-299. , and 
504 |a Stagner, J., Dias Alves, V., Narayan, R., (2012) J Appl Polym Sci, 126, p. 142. , and 
506 |2 openaire  |e Política editorial 
520 3 |a Films of PBAT/TPS (poly(butylene adipate-co-terephthalate)/thermoplastic starch) (starch plasticized with glycerol containing citric and stearic acids) without and with 0.6 wt% starch nanoparticles were produced by extrusion. The presence of nanoparticles during the extrusion process led to a higher degree of starch gelatinization improving starch compatibility with PBAT. Nanoparticles modified the interaction between the different components of the PBAT/TPS composite. The hydroxyl groups of the starch nanoparticles interacted with starch amylose by means of hydrogen bonds. In addition, nanoparticles modified the structure of the PBAT rigid segment (BT): a shift of Tm of BT toward lower temperatures and a slight shift of the relaxation of the BT segment to higher temperatures were observed. The incorporation of nanoparticles also had a reinforcing effect on the PBAT/TPS matrix. The composite presented slight increases of Young's modulus (E) and stress at break (σb) without affecting the strain at break (ϵb). The rate of biodegradability was improved with the use of starch nanoparticles. The composite showed faster deterioration than the matrix, showing the first changes in its tonality and breakdowns at only 6 days of burial in compost. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry  |l eng 
593 |a LP & MC, Dep. de Física – IFIBA (CONICET), FCEyN, UBA, Ciudad Universitaria, CABA, 1428, Argentina 
593 |a Department of Bromatological Analysis, College of Pharmacy, Federal University of Bahia, Barão of Geremoabo Street, Ondina, Salvador, Bahia 40171-970, Brazil 
690 1 0 |a BIODEGRADABILITY 
690 1 0 |a PBAT 
690 1 0 |a STARCH NANOPARTICLES 
690 1 0 |a THERMAL PROPERTIES 
690 1 0 |a TPS 
690 1 0 |a BIODEGRADABILITY 
690 1 0 |a CHEMICAL INDUSTRY 
690 1 0 |a COMPOSTING 
690 1 0 |a ELASTIC MODULI 
690 1 0 |a EXTRUSION 
690 1 0 |a GELATION 
690 1 0 |a HYDROGEN BONDS 
690 1 0 |a NANOPARTICLES 
690 1 0 |a STARCH 
690 1 0 |a THERMODYNAMIC PROPERTIES 
690 1 0 |a EXTRUSION PROCESS 
690 1 0 |a HYDROXYL GROUPS 
690 1 0 |a LOWER TEMPERATURES 
690 1 0 |a PBAT 
690 1 0 |a POLIES (BUTYLENE ADIPATE CO TEREPHTHALATE) 
690 1 0 |a REINFORCING EFFECTS 
690 1 0 |a STARCH GELATINIZATION 
690 1 0 |a STARCH NANOPARTICLES 
690 1 0 |a NANOCOMPOSITE FILMS 
700 1 |a Eloy Moura, L. 
700 1 |a Famá, L. 
700 1 |a Druzian, J.I. 
700 1 |a Goyanes, Silvia Nair 
773 0 |d John Wiley and Sons Ltd, 2016  |g v. 65  |h pp. 938-945  |k n. 8  |p Polym. Int.  |x 09598103  |t Polymer International 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84969793357&doi=10.1002%2fpi.5127&partnerID=40&md5=b41c596bffb69fc39bb81ec6744f36f0  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/pi.5127  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09598103_v65_n8_p938_GonzalezSeligra  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09598103_v65_n8_p938_GonzalezSeligra  |y Registro en la Biblioteca Digital 
961 |a paper_09598103_v65_n8_p938_GonzalezSeligra  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76793