Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways

Along with the discovery of tumor-driven inflammatory pathways, there has been a considerable progress over the past 10 years in understanding the mechanisms leading to cancer immunosurveillance and immunoediting. Several regulatory pathways, typically involved in immune cell homeostasis, are co-opt...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rabinovich, G.A
Otros Autores: Conejo-García, J.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 44352caa a22035297a 4500
001 PAPER-15786
003 AR-BaUEN
005 20230607131905.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84975256659 
024 7 |2 cas  |a galectin 1, 258495-34-0; galectin 3, 208128-56-7; galectin 8, 220452-97-1; interleukin 2, 85898-30-2; leukosialin, 123897-54-1; n acetylglucosaminyltransferase, 9054-49-3; protein, 67254-75-5; Galectins; Ligands 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JMOBA 
100 1 |a Rabinovich, G.A. 
245 1 0 |a Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways 
260 |b Academic Press  |c 2016 
270 1 0 |m Rabinovich, G.A.; Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Argentina; email: gabyrabi@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation (2011) Cell., 144, pp. 646-674 
504 |a Trinchieri, G., Cancer and inflammation: an old intuition with rapidly evolving new concepts (2012) Annu. Rev. Immunol., 30, pp. 677-706 
504 |a Balkwill, F.R., Mantovani, A., Cancer-related inflammation: common themes and therapeutic opportunities (2012) Semin. Cancer Biol., 22, pp. 33-40 
504 |a Mantovani, A., Molecular pathways linking inflammation and cancer (2010) Curr. Mol. Med., 10, pp. 369-373 
504 |a Gubin, M.M., Schreiber, R.D., CANCER. the odds of immunotherapy success (2015) Science., 350, pp. 158-159 
504 |a Rabinovich, G.A., Gabrilovich, D., Sotomayor, E.M., Immunosuppressive strategies that are mediated by tumor cells (2007) Annu. Rev. Immunol., 25, pp. 267-296 
504 |a Mariño, K., Bones, J., Kattla, J.J., Rudd, P.M., A systematic approach to protein glycosylation analysis: a path through the maze (2010) Nat. Chem. Biol., 6, pp. 713-723 
504 |a Elola, M.T., Blidner, A.G., Ferragut, F., Bracalente, C., Rabinovich, G.A., Assembly, organization and regulation of cell-surface receptors by lectin–glycan complexes (2015) Biochem. J., 469, pp. 1-16 
504 |a van Kooyk, Y., Rabinovich, G.A., Protein–glycan interactions in the control of innate and adaptive immune responses (2008) Nat. Immunol., 9, pp. 593-601 
504 |a Blidner, A.G., Mendez-Huergo, S.P., Cagnoni, A.J., Rabinovich, G.A., Re-wiring regulatory cell networks in immunity by galectin–glycan interactions (2015) FEBS Lett., 589, pp. 3407-3418 
504 |a Pinho, S.S., Reis, C.A., Glycosylation in cancer: mechanisms and clinical implications (2015) Nat. Rev. Cancer., 15, pp. 540-555 
504 |a Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin–glycan interactions in autoimmunity and cancer (2012) Immunity., 36, pp. 322-335 
504 |a Croci, D.O., Cerliani, J.P., Pinto, N.A., Morosi, L.G., Rabinovich, G.A., Regulatory role of glycans in the control of hypoxia-driven angiogenesis and sensitivity to anti-angiogenic treatment (2014) Glycobiology., 24, pp. 1283-1290 
504 |a Hakomori, S., Glycosylation defining cancer malignancy: new wine in an old bottle (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 10231-10233 
504 |a Bassaganas, S., Allende, H., Cobler, L., Ortiz, M.R., Llop, E., de Bolos, C., Peracaula, R., Inflammatory cytokines regulate the expression of glycosyltransferases involved in the biosynthesis of tumor-associated sialylated glycans in pancreatic cancer cell lines (2015) Cytokine., 75, pp. 197-206 
504 |a Higai, K., Miyazaki, N., Azuma, Y., Matsumoto, K., Interleukin-1beta induces sialyl Lewis X on hepatocellular carcinoma HuH-7 cells via enhanced expression of ST3Gal IV and FUT VI gene (2006) FEBS Lett., 580, pp. 6069-6075 
504 |a Azuma, Y., Murata, M., Matsumoto, K., Alteration of sugar chains on alpha(1)-acid glycoprotein secreted following cytokine stimulation of HuH-7 cells in vitro (2000) Clin. Chim. Acta., 294, pp. 93-103 
504 |a Nolz, J.C., Harty, J.T., IL-15 regulates memory CD8 + T cell O-glycan synthesis and affects trafficking (2014) J. Clin. Invest., 124, pp. 1013-1026 
504 |a Carlow, D.A., Corbel, S.Y., Williams, M.J., Ziltener, H.J., IL-2, -4, and -15 differentially regulate O-glycan branching and P-selectin ligand formation in activated CD8 T cells (2001) J. Immunol., 167, pp. 6841-6848 
504 |a Lau, K.S., Dennis, J.W., N-glycans in cancer progression (2008) Glycobiology., 18, pp. 750-760 
504 |a Miwa, H.E., Song, Y., Alvarez, R., Cummings, R.D., Stanley, P., The bisecting GlcNAc in cell growth control and tumor progression (2012) Glycoconj. J., 29, pp. 609-618 
504 |a Kimura, T., Finn, O.J., MUC1 immunotherapy is here to stay (2013) Expert. Opin. Biol. Ther., 13, pp. 35-49 
504 |a Bull, C., den Brok, M.H., Adema, G.J., Sweet escape: sialic acids in tumor immune evasion (2014) Biochim. Biophys. Acta., 1846, pp. 238-246 
504 |a Dam, T.K., Brewer, C.F., Multivalent lectin–carbohydrate interactions energetics and mechanisms of binding (2010) Adv. Carbohydr. Chem. Biochem., 63, pp. 139-164 
504 |a Cummings, R.D., Esko, J.D., Principles of Glycan Recognition (2009) Essentials of Glycobiology, , A. Varki R.D. Cummings J.D. Esko H.H. Freeze P. Stanley C.R. Bertozzi G.W. Hart M.E.,. Etzler 2nd edit. Cold Spring Harbor NY (Chapter 27; ISBN-13: 9780879697709) 
504 |a Brewer, C.F., Miceli, M.C., Baum, L.G., Clusters, bundles, arrays and lattices: novel mechanisms for lectin–saccharide-mediated cellular interactions (2002) Curr. Opin. Struct. Biol., 12, pp. 616-623 
504 |a Thiemann, S., Baum, L.G., Galectins and immune responses—just how do they do those things they do? (2016) Annu. Rev. Immunol., , (Feb 22. Epub ahead of print) 
504 |a Liu, F.T., Rabinovich, G.A., Galectins as modulators of tumour progression (2005) Nat. Rev. Cancer, 5, pp. 29-41 
504 |a Lahm, H., Andre, S., Hoeflich, A., Fischer, J.R., Sordat, B., Kaltner, H., Wolf, E., Gabius, H.J., Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures (2001) J. Cancer Res. Clin. Oncol., 127, pp. 375-386 
504 |a Langbein, S., Brade, J., Badawi, J.K., Hatzinger, M., Kaltner, H., Lensch, M., Gene-expression signature of adhesion/growth-regulatory tissue lectins (galectins) in transitional cell cancer and its prognostic relevance (2007) Histopathology., 51, pp. 681-690 
504 |a Remmelink, M., de Leval, L., Decaestecker, C., Duray, A., Crompot, E., Sirtaine, N., Quantitative immunohistochemical fingerprinting of adhesion/growth-regulatory galectins in salivary gland tumours: divergent profiles with diagnostic potential (2011) Histopathology., 58, pp. 543-556 
504 |a Laderach, D.J., Gentilini, L.D., Giribaldi, L., Delgado, V.C., Nugnes, L., Croci, D.O., A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease (2013) Cancer Res., 73, pp. 86-96 
504 |a Schulkens, I.A., Heusschen, R., van den Boogaart, V., van Suylen, R.J., Dingemans, A.M., Griffioen, A.W., Thijssen, V.L., Galectin expression profiling identifies galectin-1 and Galectin-9Delta5 as prognostic factors in stage I/II non-small cell lung cancer (2014) PLoS One., 9 (9). , e107988 
504 |a El Leithy, A.A., Helwa, R., Assem, M.M., Hassan, N.H., Expression profiling of cancer-related galectins in acute myeloid leukemia (2015) Tumour Biol., 36, pp. 7929-7939 
504 |a Thijssen, V.L., Barkan, B., Shoji, H., Aries, I.M., Mathieu, V., Deltour, L., Tumor cells secrete galectin-1 to enhance endothelial cell activity (2010) Cancer Res., 70, pp. 6216-6224 
504 |a Croci, D.O., Salatino, M., Rubinstein, N., Cerliani, J.P., Cavallin, L.E., Leung, H.J., Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma (2012) J. Exp. Med., 209, pp. 1985-2000 
504 |a Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Mendez-Huergo, S.P., Mascanfroni, I.D., Dergan-Dylon, S., Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell., 156, pp. 744-758 
504 |a Bacigalupo, M.L., Manzi, M., Espelt, M.V., Gentilini, L.D., Compagno, D., Laderach, D.J., Galectin-1 triggers epithelial–mesenchymal transition in human hepatocellular carcinoma cells (2015) J. Cell. Physiol., 230, pp. 1298-1309 
504 |a Liu, F.T., Patterson, R.J., Wang, J.L., Intracellular functions of galectins (2002) Biochim. Biophys. Acta., 1572, pp. 263-273 
504 |a Elad-Sfadia, G., Haklai, R., Balan, E., Kloog, Y., Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity (2004) J. Biol. Chem., 279, pp. 34922-34930 
504 |a Su, Y.C., Davuluri, G.V., Chen, C.H., Shiau, D.C., Chen, C.C., Chen, C.L., Lin, Y.S., Chang, C.P., Galectin-1-induced autophagy facilitates cisplatin resistance of hepatocellular carcinoma (2016) PLoS One., 11. , e0148408 
504 |a Hirabayashi, J., Kasai, K.I., Evolution of animal lectins (1998) Prog. Mol. Subcell. Biol., 19, pp. 45-88 
504 |a Nickel, W., The mystery of nonclassical protein secretion. a current view on cargo proteins and potential export routes (2003) Eur. J. Biochem., 270, pp. 2109-2119 
504 |a Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Oligosaccharide specificity of galectins: a search by frontal affinity chromatography (2002) Biochim. Biophys. Acta., 1572, pp. 232-254 
504 |a Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M.E., Alvarez, R., Bryan, M.C., Printed covalent glycan array for ligand profiling of diverse glycan binding proteins (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 17033-17038 
504 |a Nagae, M., Nishi, N., Nakamura-Tsuruta, S., Hirabayashi, J., Wakatsuki, S., Kato, R., Structural analysis of the human galectin-9 N-terminal carbohydrate recognition domain reveals unexpected properties that differ from the mouse orthologue (2008) J. Mol. Biol., 375, pp. 119-135 
504 |a Rabinovich, G.A., Toscano, M.A., Turning “sweet” on immunity: galectin–glycan interactions in immune tolerance and inflammation (2009) Nat. Rev. Immunol., 9, pp. 338-352 
504 |a Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat. Immunol., 8, pp. 825-834 
504 |a Amano, M., Galvan, M., He, J., Baum, L.G., The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death (2003) J. Biol. Chem., 278, pp. 7469-7475 
504 |a Stowell, S.R., Arthur, C.M., Mehta, P., Slanina, K.A., Blixt, O., Leffler, H., Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens (2008) J. Biol. Chem., 283, pp. 10109-10123 
504 |a Ideo, H., Matsuzaka, T., Nonaka, T., Seko, A., Yamashita, K., Galectin-8-N-domain recognition mechanism for sialylated and sulfated glycans (2011) J. Biol. Chem., 286, pp. 11346-11355 
504 |a Swaminathan, G.J., Leonidas, D.D., Savage, M.P., Ackerman, S.J., Acharya, K.R., Selective recognition of mannose by the human eosinophil Charcot–Leyden crystal protein (galectin-10): a crystallographic study at 1.8 A resolution (1999) Biochemistry., 38, p. 15406 
504 |a Stillman, B.N., Hsu, D.K., Pang, M., Brewer, C.F., Johnson, P., Liu, F.T., Baum, L.G., Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death (2006) J. Immunol., 176, pp. 778-789 
504 |a Wang, J., Lu, Z.H., Gabius, H.J., Rohowsky-Kochan, C., Ledeen, R.W., Wu, G., Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis (2009) J. Immunol., 182, pp. 4036-4045 
504 |a Kouo, T., Huang, L., Pucsek, A.B., Cao, M., Solt, S., Armstrong, T., Jaffee, E., Galectin-3 shapes antitumor immune responses by suppressing CD8 + T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells (2015) Cancer Immunol. Res., 3, pp. 412-423 
504 |a Carcamo, C., Pardo, E., Oyanadel, C., Bravo-Zehnder, M., Bull, P., Caceres, M., Galectin-8 binds specific beta1 integrins and induces polarized spreading highlighted by asymmetric lamellipodia in Jurkat T cells (2006) Exp. Cell Res., 312, pp. 374-386 
504 |a Eshkar Sebban, L., Ronen, D., Levartovsky, D., Elkayam, O., Caspi, D., Aamar, S., The involvement of CD44 and its novel ligand galectin-8 in apoptotic regulation of autoimmune inflammation (2007) J. Immunol., 179, pp. 1225-1235 
504 |a Zhu, C., Anderson, A.C., Schubart, A., Xiong, H., Imitola, J., Khoury, S.J., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity (2005) Nat. Immunol., 6, pp. 1245-1252 
504 |a Wu, C., Thalhamer, T., Franca, R.F., Xiao, S., Wang, C., Hotta, C., Galectin-9–CD44 interaction enhances stability and function of adaptive regulatory T cells (2014) Immunity., 41, pp. 270-282 
504 |a Thiemann, S., Man, J.H., Chang, M.H., Lee, B., Baum, L.G., Galectin-1 regulates tissue exit of specific dendritic cell populations (2015) J. Biol. Chem., 290, pp. 22662-22677 
504 |a Ilarregui, J.M., Croci, D.O., Bianco, G.A., Toscano, M.A., Salatino, M., Vermeulen, M.E., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat. Immunol., 10, pp. 981-991 
504 |a Fulcher, J.A., Chang, M.H., Wang, S., Almazan, T., Hashimi, S.T., Eriksson, A.U., Galectin-1 co-clusters CD43/CD45 on dendritic cells and induces cell activation and migration through Syk and protein kinase C signaling (2009) J. Biol. Chem., 284, pp. 26860-26870 
504 |a Starossom, S.C., Mascanfroni, I.D., Imitola, J., Cao, L., Raddassi, K., Hernandez, S.F., Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration (2012) Immunity., 37, pp. 249-263 
504 |a Hsieh, S.H., Ying, N.W., Wu, M.H., Chiang, W.F., Hsu, C.L., Wong, T.Y., Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells (2008) Oncogene., 27, pp. 3746-3753 
504 |a Jouve, N., Despoix, N., Espeli, M., Gauthier, L., Cypowyj, S., Fallague, K., The involvement of CD146 and its novel ligand Galectin-1 in apoptotic regulation of endothelial cells (2013) J. Biol. Chem., 288, pp. 2571-2579 
504 |a Markowska, A.I., Liu, F.T., Panjwani, N., Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response (2010) J. Exp. Med., 207, pp. 1981-1993 
504 |a Delgado, V.M., Nugnes, L.G., Colombo, L.L., Troncoso, M.F., Fernandez, M.M., Malchiodi, E.L., Modulation of endothelial cell migration and angiogenesis: a novel function for the “tandem-repeat” lectin galectin-8 (2011) FASEB J., 25, pp. 242-254 
504 |a Rabinovich, G., Castagna, L., Landa, C., Riera, C.M., Sotomayor, C., Regulated expression of a 16-kd galectin-like protein in activated rat macrophages (1996) J. Leukoc. Biol., 59, pp. 363-370 
504 |a Tesone, A.J., Rutkowski, M.R., Brencicova, E., Svoronos, N., Perales-Puchalt, A., Stephen, T.L., Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells (2016) Cell Rep., 14, pp. 1774-1786 
504 |a Fuertes, M.B., Molinero, L.L., Toscano, M.A., Ilarregui, J.M., Rubinstein, N., Fainboim, L., Regulated expression of galectin-1 during T-cell activation involves Lck and Fyn kinases and signaling through MEK1/ERK, p38 MAP kinase and p70S6 kinase (2004) Mol. Cell. Biochem., 267, pp. 177-185 
504 |a Zuñiga, E., Rabinovich, G.A., Iglesias, M.M., Gruppi, A., Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis (2001) J. Leukoc. Biol., 70, pp. 73-79 
504 |a Garin, M.I., Chu, C.C., Golshayan, D., Cernuda-Morollon, E., Wait, R., Lechler, R.I., Galectin-1: a key effector of regulation mediated by CD4 + CD25 + T cells (2007) Blood., 109, pp. 2058-2065 
504 |a Kopcow, H.D., Rosetti, F., Leung, Y., Allan, D.S., Kutok, J.L., Strominger, J.L., T cell apoptosis at the maternal-fetal interface in early human pregnancy, involvement of galectin-1 (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 18472-18477 
504 |a Dyer, K.D., Rosenberg, H.F., Transcriptional regulation of galectin-10 (eosinophil Charcot–Leyden crystal protein): a GC box (-44 to -50) controls butyric acid induction of gene expression (2001) Life Sci., 69, pp. 201-212 
504 |a Kubach, J., Lutter, P., Bopp, T., Stoll, S., Becker, C., Huter, E., Human CD4 + CD25 + regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function (2007) Blood., 110, pp. 1550-1558 
504 |a Thijssen, V.L., Heusschen, R., Caers, J., Griffioen, A.W., Galectin expression in cancer diagnosis and prognosis: a systematic review (2015) Biochim. Biophys. Acta., 1855, pp. 235-247 
504 |a Mendez-Huergo, S.P., Maller, S.M., Farez, M.F., Marino, K., Correale, J., Rabinovich, G.A., Integration of lectin-glycan recognition systems and immune cell networks in CNS inflammation (2014) Cytokine Growth Factor Rev., 25, pp. 247-255 
504 |a Rubinstein, N., Alvarez, M., Zwirner, N., Toscano, M., Ilarregui, J., Bravo, A., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection: a potential mechanism of tumor-immune privilege (2004) Cancer Cell., 5, pp. 241-251 
504 |a Cedeno-Laurent, F., Opperman, M.J., Barthel, S.R., Hays, D., Schatton, T., Zhan, Q., He, X., Dimitroff, C.J., Metabolic inhibition of galectin-1-binding carbohydrates accentuates antitumor immunity (2012) J. Investig. Dermatol., 132, pp. 410-420 
504 |a Rostoker, R., Yaseen, H., Schif-Zuck, S., Lichtenstein, R.G., Rabinovich, G.A., Ariel, A., Galectin-1 induces 12/15-lipoxygenase expression in murine macrophages and favors their conversion toward a pro-resolving phenotype (2013) Prostaglandins Other Lipid Mediat., 107, pp. 85-94 
504 |a Rabinovich, G.A., Ariel, A., Hershkoviz, R., Hirabayashi, J., Kasai, K.I., Lider, O., Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1 (1999) Immunology., 97, pp. 100-106 
504 |a He, J., Baum, L.G., Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration (2006) Lab. Investig., 86, pp. 578-590 
504 |a Juszczynski, P., Ouyang, J., Monti, S., Rodig, S.J., Takeyama, K., Abramson, J., The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 13134-13139 
504 |a Gandhi, M.K., Moll, G., Smith, C., Dua, U., Lambley, E., Ramuz, O., Galectin-1 mediated suppression of Epstein–Barr virus specific T-cell immunity in classic Hodgkin lymphoma (2007) Blood., 110, pp. 1326-1329 
504 |a Ouyang, J., Juszczynski, P., Rodig, S.J., Green, M.R., O'Donnell, E., Currie, T., Viral induction and targeted inhibition of galectin-1 in EBV + posttransplant lymphoproliferative disorders (2011) Blood., 117, pp. 4315-4322 
504 |a Banh, A., Zhang, J., Cao, H., Bouley, D.M., Kwok, S., Kong, C., Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis (2011) Cancer Res., 71, pp. 4423-4431 
504 |a Kuo, P.L., Huang, M.S., Cheng, D.E., Hung, J.Y., Yang, C.J., Chou, S.H., Lung cancer-derived galectin-1 enhances tumorigenic potentiation of tumor-associated dendritic cells by expressing heparin-binding EGF-like growth factor (2012) J. Biol. Chem., 287, pp. 9753-9764 
504 |a Soldati, R., Berger, E., Zenclussen, A.C., Jorch, G., Lode, H.N., Salatino, M., Neuroblastoma triggers an immunoevasive program involving galectin-1-dependent modulation of T cell and dendritic cell compartments (2012) Int. J. Cancer, 131, pp. 1131-1141 
504 |a Dalotto-Moreno, T., Croci, D.O., Cerliani, J.P., Martinez-Allo, V.C., Dergan-Dylon, S., Mendez-Huergo, S.P., Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease (2013) Cancer Res., 73, pp. 1107-1117 
504 |a Ito, K., Scott, S.A., Cutler, S., Dong, L.F., Neuzil, J., Blanchard, H., Ralph, S.J., Thiodigalactoside inhibits murine cancers by concurrently blocking effects of galectin-1 on immune dysregulation, angiogenesis and protection against oxidative stress (2011) Angiogenesis., 14, pp. 293-307 
504 |a Martinez-Bosch, N., Fernandez-Barrena, M.G., Moreno, M., Ortiz-Zapater, E., Munne-Collado, J., Iglesias, M., Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation (2014) Cancer Res., 74, pp. 3512-3524 
504 |a Tang, D., Gao, J., Wang, S., Yuan, Z., Ye, N., Chong, Y., Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer (2015) Tumour Biol., 36, pp. 5617-5626 
504 |a Verschuere, T., Toelen, J., Maes, W., Poirier, F., Boon, L., Tousseyn, T., Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity (2014) Int. J. Cancer., 134, pp. 873-884 
504 |a Baker, G.J., Chockley, P., Yadav, V.N., Doherty, R., Ritt, M., Sivaramakrishnan, S., Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity (2014) Cancer Res., 74, pp. 5079-5090 
504 |a Rutkowski, M.R., Stephen, T.L., Svoronos, N., Allegrezza, M.J., Tesone, A.J., Perales-Puchalt, A., Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation (2015) Cancer Cell., 27, pp. 27-40 
504 |a Croci, D.O., Morande, P.E., Dergan-Dylon, S., Borge, M., Toscano, M.A., Stupirski, J.C., Nurse-like cells control the activity of chronic lymphocytic leukemia B cells via galectin-1 (2013) Leukemia., 27, pp. 1413-1416 
504 |a Cedeno-Laurent, F., Watanabe, R., Teague, J.E., Kupper, T.S., Clark, R.A., Dimitroff, C.J., Galectin-1 inhibits the viability, proliferation, and Th1 cytokine production of nonmalignant T cells in patients with leukemic cutaneous T-cell lymphoma (2012) Blood., 119, pp. 3534-3538 
504 |a Roberts, A.A., Amano, M., Felten, C., Galvan, M., Sulur, G., Pinter-Brown, L., Galectin-1-mediated apoptosis in mycosis fungoides: the roles of CD7 and cell surface glycosylation (2003) Mod. Pathol., 16, pp. 543-551 
504 |a Rappl, G., Abken, H., Muche, J.M., Sterry, W., Tilgen, W., Andre, S., CD4 + CD7- leukemic T cells from patients with Sezary syndrome are protected from galectin-1-triggered T cell death (2002) Leukemia., 16, pp. 840-845 
504 |a Lykken, J.M., Horikawa, M., Minard-Colin, V., Kamata, M., Miyagaki, T., Poe, J.C., Tedder, T.F., Galectin-1 drives lymphoma CD20 immunotherapy resistance: validation of a preclinical system to identify resistance mechanisms (2016) Blood., , (pii: blood-2015-11-681130. Epub ahead of print) 
504 |a Demotte, N., Stroobant, V., Courtoy, P.J., Van Der Smissen, P., Colau, D., Luescher, I.F., Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes (2008) Immunity., 28, pp. 414-424 
504 |a Demotte, N., Wieers, G., Van Der Smissen, P., Moser, M., Schmidt, C., Thielemans, K., A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice (2010) Cancer Res., 70, pp. 7476-7488 
504 |a Peng, W., Wang, H.Y., Miyahara, Y., Peng, G., Wang, R.F., Tumor-associated galectin-3 modulates the function of tumor-reactive T cells (2008) Cancer Res., 68, pp. 7228-7236 
504 |a Fukumori, T., Takenaka, Y., Yoshii, T., Kim, H.R., Hogan, V., Inohara, H., CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis (2003) Cancer Res., 63, pp. 8302-8311 
504 |a Tsuboi, S., Sutoh, M., Hatakeyama, S., Hiraoka, N., Habuchi, T., Horikawa, Y., A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans (2011) EMBO J., 30, pp. 3173-3185 
504 |a Wang, W., Guo, H., Geng, J., Zheng, X., Wei, H., Sun, R., Tian, Z., Tumor-released Galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack (2014) J. Biol. Chem., 289, pp. 33311-33319 
504 |a Sakuishi, K., Jayaraman, P., Behar, S.M., Anderson, A.C., Kuchroo, V.K., Emerging Tim-3 functions in antimicrobial and tumor immunity (2011) Trends Immunol., 32, pp. 345-349 
504 |a Li, H., Wu, K., Tao, K., Chen, L., Zheng, Q., Lu, X., Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma (2012) Hepatology., 56, pp. 1342-1351 
504 |a Kang, C.W., Dutta, A., Chang, L.Y., Mahalingam, J., Lin, Y.C., Chiang, J.M., Apoptosis of tumor infiltrating effector TIM-3 + CD8 + T cells in colon cancer (2015) Sci. Rep., 5, p. 15659 
504 |a Dardalhon, V., Anderson, A.C., Karman, J., Apetoh, L., Chandwaskar, R., Lee, D.H., Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b + Ly-6G + myeloid cells (2010) J. Immunol., 185, pp. 1383-1392 
504 |a Nagahara, K., Arikawa, T., Oomizu, S., Kontani, K., Nobumoto, A., Tateno, H., Galectin-9 increases Tim-3 + dendritic cells and CD8 + T cells and enhances antitumor immunity via galectin-9–Tim-3 interactions (2008) J. Immunol., 181, pp. 7660-7669 
504 |a Oomizu, S., Arikawa, T., Niki, T., Kadowaki, T., Ueno, M., Nishi, N., Galectin-9 suppresses Th17 cell development in an IL-2-dependent but Tim-3-independent manner (2012) Clin. Immunol., 143, pp. 51-58 
504 |a Leitner, J., Rieger, A., Pickl, W.F., Zlabinger, G., Grabmeier-Pfistershammer, K., Steinberger, P., TIM-3 does not act as a receptor for galectin-9 (2013) PLoS Pathog., 9. , e1003253 
504 |a Chiba, S., Baghdadi, M., Akiba, H., Yoshiyama, H., Kinoshita, I., Dosaka-Akita, H., Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1 (2012) Nat. Immunol., 13, pp. 832-842 
504 |a Madireddi, S., Eun, S.Y., Lee, S.W., Nemčovičová, I., Mehta, A.K., Zajonc, D.M., Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies (2014) J. Exp. Med., 211, pp. 1433-1448 
504 |a Bunt, S.K., Yang, L., Sinha, P., Clements, V.K., Leips, J., Ostrand-Rosenberg, S., Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression (2007) Cancer Res., 67, pp. 10019-10026 
504 |a Sinha, P., Clements, V.K., Fulton, A.M., Ostrand-Rosenberg, S., Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells (2007) Cancer Res., 67, pp. 4507-4513 
504 |a Eruslanov, E., Daurkin, I., Ortiz, J., Vieweg, J., Kusmartsev, S., Pivotal Advance: Tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE(2) catabolism in myeloid cells (2010) J. Leukoc. Biol., 88, pp. 839-848 
504 |a Takizawa, H., Boettcher, S., Manz, M.G., Demand-adapted regulation of early hematopoiesis in infection and inflammation (2012) Blood., 119, pp. 2991-3002 
504 |a Ostrand-Rosenberg, S., Sinha, P., Myeloid-derived suppressor cells: linking inflammation and cancer (2009) J. Immunol., 182, pp. 4499-4506 
504 |a Gabrilovich, D.I., Ostrand-Rosenberg, S., Bronte, V., Coordinated regulation of myeloid cells by tumours (2012) Nat. Rev. Immunol., 12, pp. 253-268 
504 |a Youn, J.I., Nagaraj, S., Collazo, M., Gabrilovich, D.I., Subsets of myeloid-derived suppressor cells in tumor-bearing mice (2008) J. Immunol., 181, pp. 5791-5802 
504 |a Rutkowski, M.R., Conejo-Garcia, J.R., TLR5 signaling, commensal microbiota and systemic tumor promoting inflammation: the three parcae of malignant progression (2015) Oncoimmunology., 4 (8). , e1021542 
504 |a Rutkowski, M.R., Conejo-Garcia, J.R., Size does not matter: commensal microorganisms forge tumor-promoting inflammation and antitumor immunity (2015) Oncoscience., 2, pp. 239-246 
504 |a Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity (2008) Blood., 111, pp. 4233-4244 
504 |a Novak, R., Dabelic, S., Dumic, J., Galectin-1 and galectin-3 expression profiles in classically and alternatively activated human macrophages (2012) Biochim. Biophys. Acta., 1820, pp. 1383-1390 
504 |a Cubillos-Ruiz, J.R., Silberman, P.C., Rutkowski, M.R., Chopra, S., Perales-Puchalt, A., Song, M., ER stress sensor XBP1 controls antitumor immunity by disrupting dendritic cell homeostasis (2015) Cell., 161, pp. 1527-1538 
504 |a Scarlett, U., Rutkowski, M., Rauwerdink, A., Fields, J., Escovar-Fadul, X., Baird, J., Ovarian cancer progression is controlled by phenotypic changes in dendritic cells (2012) J. Exp. Med., 209, pp. 495-506 
504 |a Tuddenham, S., Sears, C.L., The intestinal microbiome and health (2015) Curr. Opin. Infect. Dis., 28, pp. 464-470 
504 |a Furusawa, Y., Obata, Y., Fukuda, S., Endo, T., Nakato, G., Takahashi, D., Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells (2013) Nature., 504, pp. 446-450 
504 |a Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., Deroos, P., Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation (2013) Nature., 504, pp. 451-455 
504 |a Chappert, P., Bouladoux, N., Naik, S., Schwartz, R., Specific gut commensal flora locally alters T cell tuning to endogenous ligands (2013) Immunity., 38, pp. 1198-1210 
504 |a Duan, J., Chung, H., Troy, E., Kasper, D., Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells (2010) Cell Host Microbe., 7, pp. 140-150 
504 |a Ivanov, I.I., Frutos Rde, L., Manel, N., Yoshinaga, K., Rifkin, D.B., Sartor, R.B., Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine (2008) Cell Host Microbe., 4, pp. 337-349 
504 |a Wei, B., Wingender, G., Fujiwara, D., Chen, D.Y., McPherson, M., Brewer, S., Commensal microbiota and CD8 + T cells shape the formation of invariant NKT cells (2010) J. Immunol., 184, pp. 1218-1226 
504 |a Iida, N., Dzutsev, A., Stewart, C.A., Smith, L., Bouladoux, N., Weingarten, R.A., Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment (2013) Science., 342, pp. 967-970 
504 |a Viaud, S., Saccheri, F., Mignot, G.G., Yamazaki, T., Daillére, R., Hannani, D., The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide (2013) Science., 342, pp. 971-976 
504 |a Sivan, A., Corrales, L., Hubert, N., Williams, J.B., Aquino-Michaels, K., Earley, Z.M., Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy (2015) Science, 110, pp. 1084-1089 
504 |a Vetizou, M., Pitt, J.M., Daillere, R., Lepage, P., Waldschmitt, N., Flament, C., Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota (2015) Science., 350, pp. 1079-1084 
504 |a Rabinovich, G.A., Thijssen, V.L., Introduction to special issue: Galectins go with the flow (2014) Glycobiology., 24, p. 885 
504 |a Thijssen, V.L., Griffioen, A.W., Galectin-1 and − 9 in angiogenesis: a sweet couple (2014) Glycobiology., 24, pp. 915-920 
504 |a Funasaka, T., Raz, A., Nangia-Makker, P., Galectin-3 in angiogenesis and metastasis (2014) Glycobiology., 24, pp. 886-891 
504 |a Troncoso, M.F., Ferragut, F., Bacigalupo, M.L., Cardenas Delgado, V.M., Nugnes, L.G., Gentilini, L., Galectin-8: a matricellular lectin with key roles in angiogenesis (2014) Glycobiology., 24, pp. 907-914 
504 |a Le, Q.T., Shi, G., Cao, H., Nelson, D.W., Wang, Y., Chen, E.Y., Galectin-1: a link between tumor hypoxia and tumor immune privilege (2005) J. Clin. Oncol., 23, pp. 8932-8941 
504 |a Zhao, X.Y., Zhao, K.W., Jiang, Y., Zhao, M., Chen, G.Q., Synergistic induction of galectin-1 by CCAAT/enhancer binding protein alpha and hypoxia-inducible factor 1alpha and its role in differentiation of acute myeloid leukemic cells (2011) J. Biol. Chem., 286, pp. 36808-36819 
504 |a Mathieu, V., de Lassalle, E.M., Toelen, J., Mohr, T., Bellahcene, A., Van Goietsenoven, G., Galectin-1 in melanoma biology and related neoangiogenesis processes (2012) J. Investig. Dermatol., 132, pp. 2245-2254 
504 |a Carlini, M.J., Roitman, P., Nunez, M., Pallotta, M.G., Boggio, G., Smith, D., Clinical relevance of galectin-1 expression in non-small cell lung cancer patients (2014) Lung Cancer., 84, pp. 73-78 
504 |a Rabinovich, G.A., Cumashi, A., Bianco, G.A., Ciavardelli, D., Iurisci, I., D'Egidio, M., Synthetic lactulose amines: novel class of anticancer agents that induce tumor-cell apoptosis and inhibit galectin-mediated homotypic cell aggregation and endothelial cell morphogenesis (2006) Glycobiology., 16, pp. 210-220 
504 |a Tejler, J., Tullberg, E., Frejd, T., Leffler, H., Nilsson, U.J., Synthesis of multivalent lactose derivatives by 1,3-dipolar cycloadditions: selective galectin-1 inhibition (2006) Carbohydr. Res., 341, pp. 1353-1362 
504 |a Giguere, D., Bonin, M.A., Cloutier, P., Patnam, R., St-Pierre, C., Sato, S., Roy, R., Synthesis of stable and selective inhibitors of human galectins-1 and -3 (2008) Bioorg. Med. Chem., 16, pp. 7811-7723 
504 |a Iurisci, I., Cumashi, A., Sherman, A.A., Tsvetkov, Y.E., Tinari, N., Piccolo, E., Consorzio Interuniversitario Nazionale Per la, B.-O., Synthetic inhibitors of galectin-1 and -3 selectively modulate homotypic cell aggregation and tumor cell apoptosis (2009) Anticancer Res., 29, pp. 403-410 
504 |a Stannard, K.A., Collins, P.M., Ito, K., Sullivan, E.M., Scott, S.A., Gabutero, E., Darren Grice, I., Ralph, S.J., Galectin inhibitory disaccharides promote tumour immunity in a breast cancer model (2010) Cancer Lett., 299, pp. 95-110 
504 |a Thijssen, V.L., Postel, R., Brandwijk, R.J., Dings, R.P., Nesmelova, I., Satijn, S., Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 15975-15980 
504 |a Dings, R.P., Miller, M.C., Nesmelova, I., Astorgues-Xerri, L., Kumar, N., Serova, M., Antitumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding (2012) J. Med. Chem., 55, pp. 5121-5129 
504 |a Dings, R.P., Kumar, N., Miller, M.C., Loren, M., Rangwala, H., Hoye, T.R., Mayo, K.H., Structure-based optimization of angiostatic agent 6DBF7, an allosteric antagonist of galectin-1 (2013) J. Pharmacol. Exp. Ther., 344, pp. 589-599 
504 |a Astorgues-Xerri, L., Riveiro, M.E., Tijeras-Raballand, A., Serova, M., Rabinovich, G.A., Bieche, I., OTX008, a selective small-molecule inhibitor of galectin-1, downregulates cancer cell proliferation, invasion and tumour angiogenesis (2014) Eur. J. Cancer., 50, pp. 2463-2477 
504 |a Nangia-Makker, P., Hogan, V., Honjo, Y., Baccarini, S., Tait, L., Bresalier, R., Raz, A., Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin (2002) J. Natl. Cancer Inst., 94, pp. 1854-1862 
520 3 |a Along with the discovery of tumor-driven inflammatory pathways, there has been a considerable progress over the past 10 years in understanding the mechanisms leading to cancer immunosurveillance and immunoediting. Several regulatory pathways, typically involved in immune cell homeostasis, are co-opted by cancer cells to thwart the development of effective antitumor responses. These regulatory circuits include the engagement of inhibitory checkpoint pathways (CTLA-4, PD-1/PD-L1, LAG-3 and TIM-3), secretion of immunosuppressive cytokines (TGF-β, IL-10), and expansion and/or recruitment of myeloid or lymphoid regulatory cell populations. Elucidation of these pathways has inspired the design and implementation of novel immunotherapeutic modalities, which have already generated clinical benefits in an important number of cancer patients. Galectins, a family of glycan-binding proteins widely expressed in the tumor microenvironment (TME), have emerged as key players in immune evasion programs that differentially control the fate of effector and regulatory lymphoid and myeloid cell populations. How do galectins translate glycan-containing information into cellular programs that control immune regulatory cancer networks? Here, we uncover the selective roles of individual members of the galectin family in cancer-promoting inflammation, immunosuppression, and angiogenesis. Moreover, we highlight the relevance of corresponding glycosylated ligands and counter-receptors and the emerging function of these lectins as biological liaisons connecting commensal microbiota, systemic inflammation, and distal tumor growth. Understanding the molecular and cellular components of galectin-driven regulatory circuits, the implications of different glycosylation pathways in their functions and their clinical relevance in human cancer might lead to the development of new therapeutic approaches in a broad range of tumor types. © 2016 Elsevier Ltd  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: PICT 2012-2440, PICT V 2014-367 
536 |a Detalles de la financiación: National Cancer Institute, P30CA10815, R01CA157664, R01CA178687, R01CA124515 
536 |a Detalles de la financiación: We would like to thank Diego Croci and Juan P. Cerliani for their insightful discussions and figures design. Work in G.A.R's lab is supported by grants from the Argentinean Agency for Promotion of Science and Technology ( PICT V 2014-367 ; PICT 2012-2440 ), University of Buenos Aires and Sales, Bunge & Born, Kenneth Raynin and René Baron Foundations. Work in J.R.C.G's lab is supported by NCI grants R01CA157664 , R01CA124515 , R01CA178687 , and P30CA10815 , and The Jayne Koskinas & Ted Giovanis Breast Cancer Research Consortium at Wistar. 
593 |a Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428, Argentina 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428, Argentina 
593 |a Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, United States 
690 1 0 |a CANCER 
690 1 0 |a GALECTINS 
690 1 0 |a GLYCANS 
690 1 0 |a IMMUNOTHERAPY 
690 1 0 |a TUMOR IMMUNITY 
690 1 0 |a ACTIVATED LEUKOCYTE CELL ADHESION MOLECULE 
690 1 0 |a B LYMPHOCYTE RECEPTOR 
690 1 0 |a CD45 ANTIGEN 
690 1 0 |a CD7 ANTIGEN 
690 1 0 |a CYTOKINE RECEPTOR 
690 1 0 |a CYTOTOXIC T LYMPHOCYTE ANTIGEN 4 
690 1 0 |a ECALECTIN 
690 1 0 |a GALECTIN 
690 1 0 |a GALECTIN 1 
690 1 0 |a GALECTIN 10 
690 1 0 |a GALECTIN 3 
690 1 0 |a GALECTIN 8 
690 1 0 |a GLYCAN 
690 1 0 |a GLYCOLIPID 
690 1 0 |a GLYCOPROTEIN 
690 1 0 |a INTERLEUKIN 10 
690 1 0 |a INTERLEUKIN 15 
690 1 0 |a INTERLEUKIN 2 
690 1 0 |a INTERLEUKIN 4 
690 1 0 |a LAG 3 PROTEIN 
690 1 0 |a LEUKOSIALIN 
690 1 0 |a N ACETYLGLUCOSAMINYLTRANSFERASE 
690 1 0 |a NATURAL KILLER CELL RECEPTOR NKG2D 
690 1 0 |a PROGRAMMED DEATH 1 LIGAND 1 
690 1 0 |a PROTEIN 
690 1 0 |a T LYMPHOCYTE RECEPTOR 
690 1 0 |a TIM 3 PROTEIN 
690 1 0 |a TRANSFORMING GROWTH FACTOR BETA 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a UNINDEXED DRUG 
690 1 0 |a VASCULOTROPIN RECEPTOR 2 
690 1 0 |a GALECTIN 
690 1 0 |a LIGAND 
690 1 0 |a ANGIOGENESIS 
690 1 0 |a ANTIGEN PRESENTING CELL 
690 1 0 |a APOPTOSIS 
690 1 0 |a BONE MARROW CELL 
690 1 0 |a BREAST CANCER 
690 1 0 |a CANCER PATIENT 
690 1 0 |a CARBOHYDRATE SYNTHESIS 
690 1 0 |a CD8+ T LYMPHOCYTE 
690 1 0 |a CELL ADHESION 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CELL MIGRATION 
690 1 0 |a CHRONIC LYMPHATIC LEUKEMIA 
690 1 0 |a CLASSICAL HODGKIN LYMPHOMA 
690 1 0 |a COMMENSAL 
690 1 0 |a CROSS LINKING 
690 1 0 |a CUTANEOUS T CELL LYMPHOMA 
690 1 0 |a CYTOKINE PRODUCTION 
690 1 0 |a CYTOKINE RELEASE 
690 1 0 |a CYTOTOXIC T LYMPHOCYTE 
690 1 0 |a ENDOTHELIUM CELL 
690 1 0 |a EPITHELIAL MESENCHYMAL TRANSITION 
690 1 0 |a FIBROBLAST 
690 1 0 |a GLYCOSYLATION 
690 1 0 |a HUMAN 
690 1 0 |a IMMUNE EVASION 
690 1 0 |a IMMUNOCOMPETENT CELL 
690 1 0 |a IMMUNOSUPPRESSIVE TREATMENT 
690 1 0 |a IMMUNOSURVEILLANCE 
690 1 0 |a INFLAMMATION 
690 1 0 |a INFLAMMATORY CELL 
690 1 0 |a INFLAMMATORY INFILTRATE 
690 1 0 |a KAPOSI SARCOMA 
690 1 0 |a LUNG ADENOCARCINOMA 
690 1 0 |a LYMPHOID CELL 
690 1 0 |a MALIGNANT NEOPLASTIC DISEASE 
690 1 0 |a MELANOMA 
690 1 0 |a MYCOSIS FUNGOIDES 
690 1 0 |a NATURAL KILLER CELL 
690 1 0 |a NON SMALL CELL LUNG CANCER 
690 1 0 |a NONHUMAN 
690 1 0 |a OVARY CANCER 
690 1 0 |a PANCREAS ADENOCARCINOMA 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROSTATE CARCINOMA 
690 1 0 |a PROTEIN PROTEIN INTERACTION 
690 1 0 |a REGULATORY T LYMPHOCYTE 
690 1 0 |a REVIEW 
690 1 0 |a SEZARY SYNDROME 
690 1 0 |a T CELL LYMPHOMA 
690 1 0 |a TH1 CELL 
690 1 0 |a TH17 CELL 
690 1 0 |a TUMOR GROWTH 
690 1 0 |a TUMOR IMMUNITY 
690 1 0 |a TUMOR MICROENVIRONMENT 
690 1 0 |a UPREGULATION 
690 1 0 |a ANIMAL 
690 1 0 |a IMMUNOLOGY 
690 1 0 |a NEOPLASM 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a ANIMALS 
690 1 0 |a GALECTINS 
690 1 0 |a GLYCOSYLATION 
690 1 0 |a HUMANS 
690 1 0 |a LIGANDS 
690 1 0 |a NEOPLASMS 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a TUMOR MICROENVIRONMENT 
700 1 |a Conejo-García, J.R. 
773 0 |d Academic Press, 2016  |g v. 428  |h pp. 3266-3281  |k n. 16  |p J. Mol. Biol.  |x 00222836  |w (AR-BaUEN)CENRE-1757  |t Journal of Molecular Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84975256659&doi=10.1016%2fj.jmb.2016.03.021&partnerID=40&md5=48a31d0e86b533e455b4e8765e36ece2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jmb.2016.03.021  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00222836_v428_n16_p3266_Rabinovich  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222836_v428_n16_p3266_Rabinovich  |y Registro en la Biblioteca Digital 
961 |a paper_00222836_v428_n16_p3266_Rabinovich  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76739