Perfect necklaces

We introduce a variant of de Bruijn words that we call perfect necklaces. Fix a finite alphabet. Recall that a word is a finite sequence of symbols in the alphabet and a circular word, or necklace, is the equivalence class of a word under rotations. For positive integers k and n, we call a necklace...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alvarez, N.
Otros Autores: Becher, V., Ferrari, P.A, Yuhjtman, S.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06920caa a22007577a 4500
001 PAPER-15730
003 AR-BaUEN
005 20230518204631.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84969245752 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Alvarez, N. 
245 1 0 |a Perfect necklaces 
260 |b Academic Press Inc.  |c 2016 
270 1 0 |m Becher, V.; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICETArgentina; email: vbecher@dc.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Allouche, J.-P., Shallit, J., (2003) Automatic Sequences: Theory, Applications, Generalizations, , Cambridge University Press Cambridge 
504 |a Barbier, E., On suppose écrite la suite naturelle des nombres; Quel est le (1010000) ièmechiffre écrit? (1887) C. R. Séances Acad. Sci. Paris, 105, pp. 1238-1239 
504 |a Barbier, E., On suppose écrite la suite naturelle des nombres; Quel est le (101000) ième chiffre écrit? (1887) C. R. Séances Acad. Sci. Paris, 105, pp. 795-798 
504 |a Becher, V., Heiber, P.A., On extending de Bruijn sequences (2011) Inform. Process. Lett., 111 (18), pp. 930-932 
504 |a Berstel, J., Perrin, D., The origins of combinatorics on words (2007) European J. Combin., 28 (3), pp. 996-1022 
504 |a Borel, É., Les probabilités dénombrables et leurs applications arithmétiques (1909) Rend. Circ. Mat. Palermo, Suppl., 27, pp. 247-271 
504 |a Bugeaud, Y., Distribution Modulo One and Diophantine Approximation (2012) Cambridge Tracts in Mathematics, 193. , Cambridge University Press Cambridge 
504 |a Champernowne, D., The construction of decimals normal in the scale of ten (1933) J. Lond. Math. Soc., 18 S - (4), p. 254 
504 |a Cvetković, D.M., Doob, M., Sachs, H., Spectra of Graphs: Theory and Application (1980) Pure and Applied Mathematics, 87. , Academic Press, Inc., Harcourt Brace Jovanovich, Publishers New York-London 
504 |a De Bruijn, N.G., A combinatorial problem (1946) Proc. K. Ned. Akad. Wet., 49, pp. 758-764. , Indag. Math. 8 1946 461 467 
504 |a Downey, R.G., Hirschfeldt, D.R., (2010) Algorithmic Randomness and Complexity. Theory and Applications of Computability, , Springer New York 
504 |a Harary, F., (1969) Graph Theory, , Addison-Wesley Publishing Co. Reading, Mass.-Menlo Park, Calif.-London 
504 |a Knuth, D.E., (1998) The Art of Computer Programming. Vol. 2: Seminumerical Algorithms, , third edition Addison-Wesley 
504 |a L'Ecuyer, P., Simard, R., TestU01: A C library for empirical testing of random number generators (2007) ACM Trans. Math. Software, 33 (4), p. 40. , Art. 22 
504 |a Lehmann, E.L., (2011) Fisher, Neyman, and the Creation of Classical Statistics, , Springer New York 
504 |a Lothaire, M., Combinatorics on Words (1997) Cambridge Mathematical Library, , Cambridge University Press Cambridge 
504 |a Lothaire, M., Algebraic Combinatorics on Words (2002) Encyclopedia of Mathematics and Its Applications, 90. , Cambridge University Press Cambridge 
504 |a Martin-Löf, P., The definition of random sequences (1966) Inf. Control, 9, pp. 602-619 
504 |a Tutte, W.T., Graph Theory (1984) Encyclopedia of Mathematics and Its Applications, 21. , Addison-Wesley Publishing Company, Advanced Book Program Reading, MA 
520 3 |a We introduce a variant of de Bruijn words that we call perfect necklaces. Fix a finite alphabet. Recall that a word is a finite sequence of symbols in the alphabet and a circular word, or necklace, is the equivalence class of a word under rotations. For positive integers k and n, we call a necklace (k,n)-perfect if each word of length k occurs exactly n times at positions which are different modulo n for any convention on the starting point. We call a necklace perfect if it is (k,k)-perfect for some k. We prove that every arithmetic sequence with difference coprime with the alphabet size induces a perfect necklace. In particular, the concatenation of all words of the same length in lexicographic order yields a perfect necklace. For each k and n, we give a closed formula for the number of (k,n)-perfect necklaces. Finally, we prove that every infinite periodic sequence whose period coincides with some (k,n)-perfect necklace for some k and some n, passes all statistical tests of size up to k, but not all larger tests. This last theorem motivated this work. © 2016 Elsevier Inc. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: We thank Norberto Fava and Victor Yohai for motivating the question on the existence of periodic sequences that pass any finite family of finite-size tests. We thank Liliana Forzani and Ricardo Fraiman for enlightening discussions. We are grateful to an anonymous referee for the reference to the early work of Ém. Barbier. Alvarez and Becher are members of Laboratoire International Associé INFINIS, Université Paris Diderot–CNRS/Universidad de Buenos Aires–CONICET. Alvarez is supported by CONICET doctoral fellowship. Becher and Ferrari are supported by the University of Buenos Aires and by CONICET . 
593 |a Universidad Nacional Del sur, Argentina 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Argentina 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
690 1 0 |a COMBINATORICS ON WORDS 
690 1 0 |a DE BRUIJN WORDS 
690 1 0 |a NECKLACES 
690 1 0 |a STATISTICAL TESTS OF FINITE SIZE 
690 1 0 |a STATISTICAL TESTS 
690 1 0 |a COMBINATORICS ON WORDS 
690 1 0 |a DE BRUIJN 
690 1 0 |a FINITE ALPHABET 
690 1 0 |a FINITE SIZE 
690 1 0 |a INFINITE PERIODIC SEQUENCE 
690 1 0 |a LEXICOGRAPHIC ORDER 
690 1 0 |a NECKLACES 
690 1 0 |a POSITIVE INTEGERS 
690 1 0 |a EQUIVALENCE CLASSES 
700 1 |a Becher, V. 
700 1 |a Ferrari, P.A. 
700 1 |a Yuhjtman, S.A. 
773 0 |d Academic Press Inc., 2016  |g v. 80  |h pp. 48-61  |p Adv. Appl. Math.  |x 01968858  |w (AR-BaUEN)CENRE-1218  |t Advances in Applied Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84969245752&doi=10.1016%2fj.aam.2016.05.002&partnerID=40&md5=56a43c2a15bfaed6babefcda368260d3  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.aam.2016.05.002  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01968858_v80_n_p48_Alvarez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01968858_v80_n_p48_Alvarez  |y Registro en la Biblioteca Digital 
961 |a paper_01968858_v80_n_p48_Alvarez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76683