The fixed point property in every weak homotopy type

We prove that for any connected compact CW-complex K there exists a space X weak homotopy equivalent to K which has the fixed point property, that is, every continuous map X → X has a fixed point. The result is known to be false if we require X to be a polyhedron. The space X we construct is a non-H...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Barmak, J.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Johns Hopkins University Press 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03752caa a22004577a 4500
001 PAPER-15686
003 AR-BaUEN
005 20230518204627.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84991072061 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Barmak, J.A. 
245 1 4 |a The fixed point property in every weak homotopy type 
260 |b Johns Hopkins University Press  |c 2016 
270 1 0 |m Barmak, J.A.; Departamento de Matematica, Fceyn-Universidad de Buenos AiresArgentina; email: jbarmak@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Baclawski, K., Björner, A., Fixed points in partially ordered sets, Adv (1979) Math, 31 (3), pp. 263-287 
504 |a Barmak, J.A., Springer-Verlag (2011) Algebraic Topology of Finite Topological Spaces and Applications, Lecture Notes in Math., p. 2032 
504 |a Barmak, J.A., Minian, E.G., Simple homotopy types and finite spaces (2008) Adv. Math, 218 (1), pp. 87-104 
504 |a Barmak, J.A., Minian, E.G., G-Colorings of Posets, Coverings and Presentations of the Fundamental Group, Preprint, , https://arxiv.org/abs/1212.6442 
504 |a Hatcher, A., (2002) Algebraic Topology, , Cambridge University Press, Cambridge 
504 |a Jiang, B.J., On the least number of fixed points (1980) Amer. J. Math, 102 (4), pp. 749-763 
504 |a Kun, G., (2003) On the Fundamental Group of Posets, , Master’s thesis, Eötvös Loránd University 
504 |a Lopez, W., An example in the fixed point theory of polyhedra (1967) Bull. Amer. Math. Soc, 73, pp. 922-924 
504 |a McCord, M.C., (1966) Duke Math. J, 33, pp. 465-474. , Singular homology groups and homotopy groups of finite topological spaces 
504 |a Spanier, E.H., (1966) Algebraic Topology, , McGraw-Hill Book Co., New York 
504 |a Waggoner, R., A fixed point theorem for (N−2)-connected n-polyhedra (1972) Proc. Amer. Math. Soc, 33, pp. 143-145 
520 3 |a We prove that for any connected compact CW-complex K there exists a space X weak homotopy equivalent to K which has the fixed point property, that is, every continuous map X → X has a fixed point. The result is known to be false if we require X to be a polyhedron. The space X we construct is a non-Hausdorff space with finitely many points. © 2016 by Johns Hopkins University Press.  |l eng 
536 |a Detalles de la financiación: PIP 112-201101-00746 
536 |a Detalles de la financiación: PICT-2011-0812 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, UBACyT 20020100300043 
536 |a Detalles de la financiación: Research supported by CONICET, and supported in part by grants UBACyT 20020100300043, CONICET PIP 112-201101-00746, and ANPCyT PICT-2011-0812. 
593 |a Departamento de Matematica, Fceyn-Universidad de Buenos Aires, Buenos Aires, Argentina 
773 0 |d Johns Hopkins University Press, 2016  |g v. 138  |h pp. 1425-1438  |k n. 5  |p Am. J. Math.  |x 00029327  |w (AR-BaUEN)CENRE-243  |t American Journal of Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991072061&doi=10.1353%2fajm.2016.0042&partnerID=40&md5=0ea817edd00c0bb8485dd93b23cc38e7  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1353/ajm.2016.0042  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00029327_v138_n5_p1425_Barmak  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029327_v138_n5_p1425_Barmak  |y Registro en la Biblioteca Digital 
961 |a paper_00029327_v138_n5_p1425_Barmak  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76639