Aromatic nucleophilic substitution in aprotic solvents using hydrogen-bonded biological amines. Kinetic studies and quantum chemical calculations
Intermolecular and intramolecular non-bonding interactions play a crucial role in determining physical and biological properties of relevant amines, and we have recently reported that they are also responsible for changing mechanisms in aromatic nucleophilic substitution (ANS) involving amine nucleo...
        Guardado en:
      
    
                  
      | Autor principal: | |
|---|---|
| Otros Autores: | , , , | 
| Formato: | Capítulo de libro | 
| Lenguaje: | Inglés | 
| Publicado: | John Wiley and Sons Ltd    
    
      2016 | 
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital | 
| Aporte de: | Registro referencial: Solicitar el recurso aquí | 
| Sumario: | Intermolecular and intramolecular non-bonding interactions play a crucial role in determining physical and biological properties of relevant amines, and we have recently reported that they are also responsible for changing mechanisms in aromatic nucleophilic substitution (ANS) involving amine nucleophiles, when they are carried out in solvents of low permittivity. The present work describes ANS in toluene with a series of biological amines that can set specific hydrogen bonding (H bonding) interactions due to their special molecular structures. Kinetic studies of ANS with 2-amino-5-guanidinopentanoic acid (arginine), (4-aminobutyl)guanidine (agmatine), 2,6-diaminohexanoic acid (lysine) and 3,4-dihydroxyphenethylamine (dopamine) towards 1-chloro-2,4-dinitrobenzene in toluene are reported. The kinetic results are compared with those obtained with 2-guanidinobenzimidazole and 2-(1H-imidazole-4-yl)ethanamine (histamine); both amines form intramolecular H bonds. The special types of H bonding were also investigated by ab initio density functional theory calculations, at the B3LYP/6-31++G(d,p) level, including counterpoise corrections to account for basis set superposition errors and solvent effects at the polarized continuum model level. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd. | 
|---|---|
| Bibliografía: | Ormazabal-Toledo, R., Santos, J.G., Ríos, P., Castro, E.A., Campodonico, P.R., Contreras, R., (2013) J. Phys. Chem., 117, pp. 5908-5915 Nogadry, T., Weaver, D.F., (2005) Medicinal Chemistry: A Molecular and Biochemical Approach, , 3rd edn., Oxford University Press, Inc, New York Ribeiro, R.F., Marenich, A.V., Cramer, C.J., Truhlar, D.G., (2011) Phys. Chem. Chem. Phys., 13, pp. 10908-10922 Arunan, E., Desiraju, G.R., Klein, R.A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D.C., Nesbitt, D.J., (2011) Pure Appl. Chem., 83 (8), pp. 1637-1641 Alvaro, C.E.S., Nudelman, N.S., (2011) Trends in Org. Chem., 15, pp. 95-107. , and references therein Nudelman, N.S., ANS reactions of amines in aprotic solvents (1996) The Chemistry of Amino, Nitroso, Nitro and Related Groups, , in, (Eds, S. Patai,), Supplement F2,, John Wiley & Sons, Ltd, London, UK Nudelman, N.S., Alvaro, C.E.S., (2011) J. Phys. Org. Chem., 24 (11), pp. 1067-1071 Terrier, F., (2013) Modern Nucleophilic Aromatic Substitution, , 1st edn., Wiley-VCH Verlag GmbH & Co, Weinheim, Germany Crampton, M.R., Nucleophilic aromatic substitution (2012) Organic Reaction Mechanisms Series, , in, (Eds, A. C. Knipe, J. Wiley & Sons, Inc, Hoboken, NJ, USA Drapeau, M.P., Ollevier, T., Taillefer, M., (2014) Chem. Eur. J., 20, pp. 5231-5236 Senger, N.A., Bo, B., Cheng, Q., Keeffe, J.R., Gronert, S., Wu, W., (2012) J. Org. Chem., 77, pp. 9535-9540 Ormazabal-Toledo, R., Contreras, R., Campodonico, P.R., (2013) J. Org. Chem., 78, pp. 1091-1097 Gillham, R.W., (1993) U.S. Patent 5266213, , Nov. 30,, references therein Rains, R.K., (1997) U.S. Patent 5608111, , March 4 Alvaro, C.E.S., Nudelman, N.S., (2010) Int. J. Chem. Kinet., 42 (12), pp. 735-742 Nudelman, N.S., Palleros, D., (1983) J. Org. Chem., 48 (10), pp. 1613-1617 Nudelman, N.S., Montserrat, J., (1990) J. Chem. Soc. Perkin Trans., 2, pp. 1073-1076 Nudelman, N.S., (1989) J. Phys. Org. Chem., 2, pp. 1-9 Alvaro, C.E.S., Nudelman, N.S., (2005) J. Phys. Org. Chem., 18, pp. 880-885. , a Alvaro, C.E.S., Nudelman, N.S., (2003) ARKIVOC, 10, pp. 95-106. , b Nudelman, N.S., Alvaro, C.E.S., Yankelevich, J.S., (1997) J. Chem. Soc. Perkin Trans., 2, pp. 2125-2130. , c Alvaro, C.E.S., Nudelman, N.S., (2013) Phys. Chem. Special Issue: Chemical Kinetics, 3 (2), pp. 39-47 Alvaro, C.E.S., Ayala, A.D., Nudelman, N.S., (2011) J. Phys. Org. Chem., 24 (2), pp. 101-109 Parr, R.G., Yang, D., (1989) Density-Functional Theory of Atoms and Molecules, , Oxford University Press, New York Becke, A.D., (1993) J. Chem. Phys., 98 (7), pp. 5648-5652. , a Lee, C., Yang, C.W., Parr, R.G., (1988) Phys. Rev. B, 37, pp. 785-793. , b Schwöbel, J., Ebert, R.-U., Kühne, R., Schürmann, G., (2009) J. Chem. Inf. Model., 49, pp. 956-962 Bergero, F.D., Alvaro, C.E.S., Nudelman, N.S., Ramos de Debiaggi, S., (2013) J. Argent. Chem. Soc., 100, pp. 35-47 Lide, D.R., Physical constants of organic compounds (2005) CRC Handbook of Chemistry and Physics, , (Ed),, in, CRC Press, Boca Raton, FL Andrade-López, N., Ariza-Castolo, A., Contreras, R., Vasquez-Olmos, A., Barba Behrens, H., Tlahuext, H., (1997) Heteroatom Chem., 8, pp. 397-410 Nudelman, N.S., Marder, M., Gurevich, A., (1993) J. Chem. Soc. Perkin Trans., 2, pp. 229-233 Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09, Revision A.1, , Gaussian, Inc., Wallingford CT Dewar, M.S.J., Zoebisch, E.G., Healy, R.F., Stewart, J.P., (1985) J. Am. Chem. Soc., 107, pp. 3902-3909 Levine, I.N., (2001) Química Cuántica, , 5th edn., Pearson Educación S. A, Madrid Boys, S.F., Bernardi, F., Calculation of small molecular interactions by differences of separate total energies – some procedures with reduced errors (1970) Mol. Phys., 19, pp. 553-556 Thanthiriwatte, K.S., Hohenstein, E.G., Burns, L.A., Sherrill, C.D., (2011) J. Chem. Theory Comput., 7, pp. 88-96 Su, P., Wu, J., Gu, J., Wu, W., Shaik, S., Hiberty, P.C., (2011) J. Chem. Theory Comput., 7, pp. 121-130 Krishtal, A., Geldof, D., Vanommeslaeghe, K., Van Alsenoy, C., Geerlings, P., (2012) J. Chem. Theory Comput., 8, pp. 125-134 Scherrer, A., Verschinin, V., Sebastiani, D., (2012) J. Chem. Theory Comput., 8, pp. 106-111 Metcalfe, W.K., Simmie, J.M., Curran, H.J., (2010) J. Phys. Chem. A, 114 (17), pp. 5478-5484 Hughes, T.F., Friesner, R.A., (2011) J. Chem. Theory Comput., 7, pp. 19-32 Tomasi, J., Mennucci, B., Cammi, R., (2005) Chem. Rev., 105 (8), pp. 2999-3093 Marenich, A.V., Cramer, C.J., Truhlar, D.G., (2009) J. Phys. Chem. B, 113, pp. 6378-6396 Parthasarathi, R., Subramanian, V., Characterization of hydrogen bonding: from Van der Waals interactions to covalency (2006) Hydrogen Bonding – New Insights, , in, (Eds, S. J. Grabowski, Springer, Netherlands Bader, R.F.W., (1991) Chem. Rev., 91 (5), pp. 893-928 Lu, T., Chen, F., Multiwfn: a multifunctional wavefunction analyzer (2012) J. Comput. Chem., 33, pp. 580-592 Parthasarathi, R., Subramanian, V., Sathyamurthy, N., (2006) J. Phys. Chem. A, 110 (10), pp. 3349-3351 Ritchie, C.D., Sawada, M., Nucleophilicity (1987) Advances in Chemistry Series, , in, (Edss, J. M. Harris, S. P. McManus, Nr. 215),, A.C.S., Washington, DC Bergero, F.D., Alvaro, C.E.S., Nudelman, N.S., Ramos de Debiaggi, S., (2009) J. Mol. Struct. (Theochem), 896, pp. 18-24 Babatunde, A.I., Nwaoduah, P.P., Ogunbona, O.A., (2005) J. Sci. Res. Dev., 10, pp. 65-72 Babatunde, A.I., (2010) J. Sci. Res. Dev., 12, pp. 152-160 Babatunde, A.I., Olusegun, A.M., Isanbor, C., (2013) Adv. Appl. Sci. Res., 4 (4), pp. 266-273 Ayeridan, A., Bankole, T.O., Hirst, J., Onyido, I., (1977) J. Chem. Soc. Perkin Trans, 2, pp. 597-603. , a Hirst, J., (1994) J. Phys. Org. Chem., 7, pp. 68-74. , b Ford, S.J., McIntyre, G.J., Johnson, M.R., Radosavljević Evans, I., (2013) Cryst. Eng. Comm., 15, pp. 7576-7582 | 
| ISSN: | 08943230 | 
| DOI: | 10.1002/poc.3519 |