Aromatic nucleophilic substitution in aprotic solvents using hydrogen-bonded biological amines. Kinetic studies and quantum chemical calculations

Intermolecular and intramolecular non-bonding interactions play a crucial role in determining physical and biological properties of relevant amines, and we have recently reported that they are also responsible for changing mechanisms in aromatic nucleophilic substitution (ANS) involving amine nucleo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alvaro, Cecilia Elisabeth Silvana
Otros Autores: Bergero, Federico Daniel, Bolcic, F.M, Ramos, Susana Beatriz, Sbarbati Nudelman, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Ltd 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Intermolecular and intramolecular non-bonding interactions play a crucial role in determining physical and biological properties of relevant amines, and we have recently reported that they are also responsible for changing mechanisms in aromatic nucleophilic substitution (ANS) involving amine nucleophiles, when they are carried out in solvents of low permittivity. The present work describes ANS in toluene with a series of biological amines that can set specific hydrogen bonding (H bonding) interactions due to their special molecular structures. Kinetic studies of ANS with 2-amino-5-guanidinopentanoic acid (arginine), (4-aminobutyl)guanidine (agmatine), 2,6-diaminohexanoic acid (lysine) and 3,4-dihydroxyphenethylamine (dopamine) towards 1-chloro-2,4-dinitrobenzene in toluene are reported. The kinetic results are compared with those obtained with 2-guanidinobenzimidazole and 2-(1H-imidazole-4-yl)ethanamine (histamine); both amines form intramolecular H bonds. The special types of H bonding were also investigated by ab initio density functional theory calculations, at the B3LYP/6-31++G(d,p) level, including counterpoise corrections to account for basis set superposition errors and solvent effects at the polarized continuum model level. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Bibliografía:Ormazabal-Toledo, R., Santos, J.G., Ríos, P., Castro, E.A., Campodonico, P.R., Contreras, R., (2013) J. Phys. Chem., 117, pp. 5908-5915
Nogadry, T., Weaver, D.F., (2005) Medicinal Chemistry: A Molecular and Biochemical Approach, , 3rd edn., Oxford University Press, Inc, New York
Ribeiro, R.F., Marenich, A.V., Cramer, C.J., Truhlar, D.G., (2011) Phys. Chem. Chem. Phys., 13, pp. 10908-10922
Arunan, E., Desiraju, G.R., Klein, R.A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D.C., Nesbitt, D.J., (2011) Pure Appl. Chem., 83 (8), pp. 1637-1641
Alvaro, C.E.S., Nudelman, N.S., (2011) Trends in Org. Chem., 15, pp. 95-107. , and references therein
Nudelman, N.S., ANS reactions of amines in aprotic solvents (1996) The Chemistry of Amino, Nitroso, Nitro and Related Groups, , in, (Eds, S. Patai,), Supplement F2,, John Wiley & Sons, Ltd, London, UK
Nudelman, N.S., Alvaro, C.E.S., (2011) J. Phys. Org. Chem., 24 (11), pp. 1067-1071
Terrier, F., (2013) Modern Nucleophilic Aromatic Substitution, , 1st edn., Wiley-VCH Verlag GmbH & Co, Weinheim, Germany
Crampton, M.R., Nucleophilic aromatic substitution (2012) Organic Reaction Mechanisms Series, , in, (Eds, A. C. Knipe, J. Wiley & Sons, Inc, Hoboken, NJ, USA
Drapeau, M.P., Ollevier, T., Taillefer, M., (2014) Chem. Eur. J., 20, pp. 5231-5236
Senger, N.A., Bo, B., Cheng, Q., Keeffe, J.R., Gronert, S., Wu, W., (2012) J. Org. Chem., 77, pp. 9535-9540
Ormazabal-Toledo, R., Contreras, R., Campodonico, P.R., (2013) J. Org. Chem., 78, pp. 1091-1097
Gillham, R.W., (1993) U.S. Patent 5266213, , Nov. 30,, references therein
Rains, R.K., (1997) U.S. Patent 5608111, , March 4
Alvaro, C.E.S., Nudelman, N.S., (2010) Int. J. Chem. Kinet., 42 (12), pp. 735-742
Nudelman, N.S., Palleros, D., (1983) J. Org. Chem., 48 (10), pp. 1613-1617
Nudelman, N.S., Montserrat, J., (1990) J. Chem. Soc. Perkin Trans., 2, pp. 1073-1076
Nudelman, N.S., (1989) J. Phys. Org. Chem., 2, pp. 1-9
Alvaro, C.E.S., Nudelman, N.S., (2005) J. Phys. Org. Chem., 18, pp. 880-885. , a
Alvaro, C.E.S., Nudelman, N.S., (2003) ARKIVOC, 10, pp. 95-106. , b
Nudelman, N.S., Alvaro, C.E.S., Yankelevich, J.S., (1997) J. Chem. Soc. Perkin Trans., 2, pp. 2125-2130. , c
Alvaro, C.E.S., Nudelman, N.S., (2013) Phys. Chem. Special Issue: Chemical Kinetics, 3 (2), pp. 39-47
Alvaro, C.E.S., Ayala, A.D., Nudelman, N.S., (2011) J. Phys. Org. Chem., 24 (2), pp. 101-109
Parr, R.G., Yang, D., (1989) Density-Functional Theory of Atoms and Molecules, , Oxford University Press, New York
Becke, A.D., (1993) J. Chem. Phys., 98 (7), pp. 5648-5652. , a
Lee, C., Yang, C.W., Parr, R.G., (1988) Phys. Rev. B, 37, pp. 785-793. , b
Schwöbel, J., Ebert, R.-U., Kühne, R., Schürmann, G., (2009) J. Chem. Inf. Model., 49, pp. 956-962
Bergero, F.D., Alvaro, C.E.S., Nudelman, N.S., Ramos de Debiaggi, S., (2013) J. Argent. Chem. Soc., 100, pp. 35-47
Lide, D.R., Physical constants of organic compounds (2005) CRC Handbook of Chemistry and Physics, , (Ed),, in, CRC Press, Boca Raton, FL
Andrade-López, N., Ariza-Castolo, A., Contreras, R., Vasquez-Olmos, A., Barba Behrens, H., Tlahuext, H., (1997) Heteroatom Chem., 8, pp. 397-410
Nudelman, N.S., Marder, M., Gurevich, A., (1993) J. Chem. Soc. Perkin Trans., 2, pp. 229-233
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09, Revision A.1, , Gaussian, Inc., Wallingford CT
Dewar, M.S.J., Zoebisch, E.G., Healy, R.F., Stewart, J.P., (1985) J. Am. Chem. Soc., 107, pp. 3902-3909
Levine, I.N., (2001) Química Cuántica, , 5th edn., Pearson Educación S. A, Madrid
Boys, S.F., Bernardi, F., Calculation of small molecular interactions by differences of separate total energies – some procedures with reduced errors (1970) Mol. Phys., 19, pp. 553-556
Thanthiriwatte, K.S., Hohenstein, E.G., Burns, L.A., Sherrill, C.D., (2011) J. Chem. Theory Comput., 7, pp. 88-96
Su, P., Wu, J., Gu, J., Wu, W., Shaik, S., Hiberty, P.C., (2011) J. Chem. Theory Comput., 7, pp. 121-130
Krishtal, A., Geldof, D., Vanommeslaeghe, K., Van Alsenoy, C., Geerlings, P., (2012) J. Chem. Theory Comput., 8, pp. 125-134
Scherrer, A., Verschinin, V., Sebastiani, D., (2012) J. Chem. Theory Comput., 8, pp. 106-111
Metcalfe, W.K., Simmie, J.M., Curran, H.J., (2010) J. Phys. Chem. A, 114 (17), pp. 5478-5484
Hughes, T.F., Friesner, R.A., (2011) J. Chem. Theory Comput., 7, pp. 19-32
Tomasi, J., Mennucci, B., Cammi, R., (2005) Chem. Rev., 105 (8), pp. 2999-3093
Marenich, A.V., Cramer, C.J., Truhlar, D.G., (2009) J. Phys. Chem. B, 113, pp. 6378-6396
Parthasarathi, R., Subramanian, V., Characterization of hydrogen bonding: from Van der Waals interactions to covalency (2006) Hydrogen Bonding – New Insights, , in, (Eds, S. J. Grabowski, Springer, Netherlands
Bader, R.F.W., (1991) Chem. Rev., 91 (5), pp. 893-928
Lu, T., Chen, F., Multiwfn: a multifunctional wavefunction analyzer (2012) J. Comput. Chem., 33, pp. 580-592
Parthasarathi, R., Subramanian, V., Sathyamurthy, N., (2006) J. Phys. Chem. A, 110 (10), pp. 3349-3351
Ritchie, C.D., Sawada, M., Nucleophilicity (1987) Advances in Chemistry Series, , in, (Edss, J. M. Harris, S. P. McManus, Nr. 215),, A.C.S., Washington, DC
Bergero, F.D., Alvaro, C.E.S., Nudelman, N.S., Ramos de Debiaggi, S., (2009) J. Mol. Struct. (Theochem), 896, pp. 18-24
Babatunde, A.I., Nwaoduah, P.P., Ogunbona, O.A., (2005) J. Sci. Res. Dev., 10, pp. 65-72
Babatunde, A.I., (2010) J. Sci. Res. Dev., 12, pp. 152-160
Babatunde, A.I., Olusegun, A.M., Isanbor, C., (2013) Adv. Appl. Sci. Res., 4 (4), pp. 266-273
Ayeridan, A., Bankole, T.O., Hirst, J., Onyido, I., (1977) J. Chem. Soc. Perkin Trans, 2, pp. 597-603. , a
Hirst, J., (1994) J. Phys. Org. Chem., 7, pp. 68-74. , b
Ford, S.J., McIntyre, G.J., Johnson, M.R., Radosavljević Evans, I., (2013) Cryst. Eng. Comm., 15, pp. 7576-7582
ISSN:08943230
DOI:10.1002/poc.3519