Azimuth calculation for buried pipelines using a synthetic array of emitters, a single survey line and scattering matrix formalism

We evaluate the simultaneous application of a synthetic-emitter array (SEA) methodology and formulation derived from the analysis of the rotation transformations of the scattering matrix (RTSM) to calculate the orientation of buried pipes from GPR data acquired along a single survey line. The main o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bullo, D.
Otros Autores: Villela, A., Bonomo, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2016
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11044caa a22009977a 4500
001 PAPER-15577
003 AR-BaUEN
005 20230518204620.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84989829010 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bullo, D. 
245 1 0 |a Azimuth calculation for buried pipelines using a synthetic array of emitters, a single survey line and scattering matrix formalism 
260 |b Elsevier B.V.  |c 2016 
270 1 0 |m Bonomo, N.; IFIBA, CONICET - Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Ciudad UniversitariaArgentina; email: bonomo@df.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Alford, R., Shear data in the presence of azimuthal anisotropy (1986) 56th Annual International Meeting, Society of Exploration Geophysics, Expanded Abstract, pp. 476-479 
504 |a Benedetto, A., A three dimensional approach for tracking cracks in bridges using GPR (2013) J. Appl. Geophys., 97, pp. 37-40 
504 |a Boerner, W., El-Arini, M., Chan, C., Mastoris, P., Polarization dependence in electromagnetic inverse problems (1981) IEEE Trans. Antennas Propag., AP-29, pp. 262-270 
504 |a Capizzi, P., Cosentino, P.L., GPR multi-component data analysis (2008) Near Surf. Geophys., 6, pp. 87-95 
504 |a Catapano, I., Soldovieri, F., Crocco, L., Di Donato, L., Persico, R., Utilities mapping via linear sampling method (2012) 4th International Conference on Ground Penetrating Radar, GPR 2012, pp. 315-319 
504 |a Cedrina, L., Bonomo, N., Osella, A., An application of the synthetic emitter-array method to improve GPR signals (2010) J. Appl. Geophys., 70, pp. 237-244 
504 |a Cedrina, L., Bonomo, N., Osella, A., GPR-signal improvement using a synthetic emitter array (2011) J. Appl. Geophys., 74, pp. 123-130 
504 |a Chen, C., Higgings, B., O'Neill, K., Detsch, R., Ultrawide-bandwidth fully-polarimetric ground penetrating radar classification of subsurface unexploded ordnance (2001) IEEE Trans. Geosci. Remote Sens., 39, pp. 1221-1230 
504 |a Engheta, N., Pappas, C.H., Elachi, C., Radiation patterns of interfacial dipole antennas (1982) Radio Sci., 17, pp. 1557-1566 
504 |a Fisher, E., McMechan, G., Annan, P., Acquisition and processing of wide-aperture ground-penetrating radar data (1992) Geophysics, 57, pp. 495-504 
504 |a Giannopoulos, A., Modelling ground penetrating radar by GprMax (2005) Constr. Build. Mater., 19, pp. 755-762 
504 |a Hoegh, K., Khazanovich, L., Dai, S., Yu, T., Evaluating asphalt concrete air void variation via GPR antenna array data (2015) Case Stud. Nondestr. Test. Eval., 3, pp. 27-33 
504 |a Jin, T., Lou, J., Zhou, Z., Extraction of landmine features using a forward-looking ground-penetrating radar with MIMO array (2012) IEEE Trans. Geosci. Remote Sens., 50, pp. 4135-4144 
504 |a Jol, H., Ground Penetrating Radar Theory and Applications (2009), Elsevier Amsterdam (539 pp.); Leckebusch, J., Comparison of a stepped-frequency continuous wave and a pulsed GPR system (2011) Archaeol. Prospect., 18, pp. 15-25 
504 |a Liu, H., Sato, M., In situ measurement of pavement thickness and dielectric permittivity by GPR using an antenna array (2014) NDT E Int., 64, pp. 65-71 
504 |a Lutz, P., Perroud, H., Phased-array transmitters for GPR surveys (2006) J. Geophys. Eng., 3, pp. 35-42 
504 |a Mazzucchelli, P., Molteni, D., Di Buono, N., Cottino, E., 3D GPR real-time automated detection of buried utilities (2012) Proceedings of the Symposium on the Application of Geophyics to Engineering and Environmental Problems, SAGEEP, pp. 309-315 
504 |a Nuzzo, L., Alli, G., Guidi, R., Cortesi, N., Sarri, A., Manacorda, G., A new densely-sampled ground penetrating radar array for landmine detection (2014) Proceedings of the 15th International Conference on Ground Penetrating Radar, GPR 2014, pp. 969-974 
504 |a Paglieroni, D., Chambers, D., Mast, J., Bond, S., Beer, N., Imaging modes for ground penetrating radar and their relation to detection performance (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, pp. 1132-1144 
504 |a Prado, J., Marques, L., Multi-sensor and multi-platform data fusion for buried objects detection and localization (2015) Proceedings of the 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2015, pp. 186-191 
504 |a Sassen, D., Everett, M., 3D polarimetric GPR coherency attributes and fullwaveform inversion of transmission data for characterizing fractured rock (2009) Geophysics, 74, pp. J23-J34 
504 |a Seol, S.J., Kim, J.-H., Song, Y., Chung, S.-H., Finding the strike direction of fractures using GPR (2001) Geophys. Prospect., 49, pp. 300-308 
504 |a Sharma, S., Jena, P., Kuloor, R., Hyperbola summation based synthetic aperture radar technique for ground penetrating radar image focusing (2012) 2012 International Conference on Computer Communication and Informatics (ICCCI -2012), Jan. 10–12, 2012, Coimbatore, INDIA, pp. 1-5 
504 |a Simi, A., Manacorda, G., Benedetto, A., Bridge deck survey with high resolution ground penetrating radar (2012) 14th International Conference on Ground Penetrating Radar, GPR 2012, pp. 489-495 
504 |a Takayama, T., Sato, M., A novel direction-finding algorithm for directional borehole radar (2007) IEEE Trans. Geosci. Remote Sens., 45 (8), pp. 2520-2528 
504 |a Van Gestel, J.P., Stoffa, P.L., Application of Alford rotation to ground-penetrating radar data (2001) Geophysics, 66, pp. 1781-1792 
504 |a Verdonck, L., Vermeulen, F., Docter, R., Meyer, C., Kniess, R., 2D and 3D ground-penetrating radar surveys with a modular system: data processing strategies and results from archaeological field tests (2013) Near Surf. Geophys., 11, pp. 239-252 
504 |a Villela, A., Romo, J., Invariant properties and rotation transformations of the GPR scattering matrix (2013) J. Appl. Geophys., 90, pp. 71-81 
504 |a Yilmaz, Ö., Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data (2001), Society of Eploration Geophysicists Tulsa, USA (2027 pp.); Zeng, Z., Li, J., Huang, L., Feng, X., Liu, F., Improving target detection accuracy based on multipolarization MIMO GPR (2015) IEEE Trans. Geosci. Remote Sens., 53, pp. 15-24 
520 3 |a We evaluate the simultaneous application of a synthetic-emitter array (SEA) methodology and formulation derived from the analysis of the rotation transformations of the scattering matrix (RTSM) to calculate the orientation of buried pipes from GPR data acquired along a single survey line. The main objective of this study is to analyze if the SEA-RTSM combination can improve the azimuth calculation obtained from the usual single-offset-RTSM (SO-RTSM) procedure. This possibility is based on the SEA ability of increasing the continuity and amplitude of the primary reflections with respect to the background clutter and noise, which is expected to reduce the fluctuations involved in the RTSM calculation of the azimuth, so that its accuracy and precision are improved. A SEA methodology designed to be used in conjunction with the RTSM methodology is described. A procedure that optimizes the results of the SEA methodology is explained. A statistical RTSM calculation is adopted in order to obtain the final azimuth. Different relevant parameters of the soil and the array of emitters are varied in order to evaluate the SEA-RTSM methodology and its results. Numerically simulated and experimental data are used in this evaluation. The SEA-RTSM and the SO-RTSM results are compared between them. These results are also compared with an equivalent common-midpoint-RTSM (CMP-RTSM) calculation. Improved precision and accuracy are obtained from the SEA-RTSM methodology in the great majority of the examples. The height/width of the resulting azimuth distribution increases 102% in average when using this procedure instead of the usual SO-RTSM procedure, the average standard deviation diminishes 12%, and the average differences between the calculated and true azimuths reduce 34%. Minor improvements with respect to SO are obtained with the CMP-RTSM methodology. The proposed SEA-RTSM methodology and its results are especially relevant in civil engineering applications in which it is necessary to know the azimuth with precision and it is not possible to acquire data following 2D grids due to obstacles in the soil surface. © 2016 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We thank the anonymous reviewers for their valuable comments. This work was partially supported by CONICET and ANPCYT . We thank CONACYT of México for Almendra Villela's postdoctoral fellowship at IFIBA-CONICET. 
593 |a IFIBA, CONICET - Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a AZIMUTH CALCULATION 
690 1 0 |a BURIED PIPES 
690 1 0 |a GPR 
690 1 0 |a SYNTHETIC-EMITTER ARRAY 
690 1 0 |a GROUND PENETRATING RADAR SYSTEMS 
690 1 0 |a LINEAR TRANSFORMATIONS 
690 1 0 |a PRECISION ENGINEERING 
690 1 0 |a SURVEYS 
690 1 0 |a ACCURACY AND PRECISION 
690 1 0 |a BACKGROUND CLUTTER 
690 1 0 |a BURIED PIPES 
690 1 0 |a CIVIL ENGINEERING APPLICATIONS 
690 1 0 |a EMITTER ARRAYS 
690 1 0 |a ROTATION TRANSFORMATION 
690 1 0 |a SCATTERING MATRICES 
690 1 0 |a STANDARD DEVIATION 
690 1 0 |a MATRIX ALGEBRA 
690 1 0 |a ACCURACY ASSESSMENT 
690 1 0 |a ARRAY 
690 1 0 |a BURIED STRUCTURE 
690 1 0 |a CIVIL ENGINEERING 
690 1 0 |a DATA ACQUISITION 
690 1 0 |a GROUND PENETRATING RADAR 
690 1 0 |a PIPELINE 
690 1 0 |a SOIL SURFACE 
650 1 7 |2 spines  |a PRECISION 
700 1 |a Villela, A. 
700 1 |a Bonomo, N. 
773 0 |d Elsevier B.V., 2016  |g v. 134  |h pp. 253-266  |p J. Appl. Geophys.  |x 09269851  |w (AR-BaUEN)CENRE-5414  |t Journal of Applied Geophysics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989829010&doi=10.1016%2fj.jappgeo.2016.09.016&partnerID=40&md5=5bec16b2a42e0693b0602733d180f4c3  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jappgeo.2016.09.016  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09269851_v134_n_p253_Bullo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09269851_v134_n_p253_Bullo  |y Registro en la Biblioteca Digital 
961 |a paper_09269851_v134_n_p253_Bullo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76530