Relationship between phytoplankton and bacterioplankton production in vegetated humic shallow lakes

In this study, we show that depth-integrated pelagic primary production (PP) can exceed bacterioplankton production (BP) in vegetated humic shallow lakes, giving as a result an autotrophic water column, despite light restrictions and availability of organic carbon for lake bacteria. Intuitively, the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Aguilar Zurita, Alex Iván
Otros Autores: Rodriguez, Patricia Laura
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Asociacion Argentina de Ecologia 2016
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11141caa a22009737a 4500
001 PAPER-15520
003 AR-BaUEN
005 20251015141925.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85007595816 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Aguilar Zurita, Alex Iván 
245 1 0 |a Relationship between phytoplankton and bacterioplankton production in vegetated humic shallow lakes 
246 3 1 |a Relación entre la producción primaria y bacteriana pelágicas en dos lagunas húmicas vegetadas 
260 |b Asociacion Argentina de Ecologia  |c 2016 
270 1 0 |m Rodríguez, P.; Austral Centre for Scientific Research (CADIC-CONICET)Argentina; email: patricia.rodriguez@cadic-conicet.gob.ar 
504 |a Algesten, G., Sobek, S., Bergström, A.K., Jonsson, A., Tranvik, L.J., Jansson, M., Contribution of sediment respiration to summer CO2 emission from low productive boreal and subarctic lakes (2005) Microbial Ecology, 50, pp. 529-535 
504 |a Andersson, E., Brunberg, A.-K., Net autotrophy in an oligotrophic lake rich in dissolved organic carbon and with high benthic primary production (2006) Aquatic Microbial Ecology, 43, pp. 1-10 
504 |a Ask, J., Karlsson, J., Persson, L., Ask, P., Byström, P., Jansson, M., Terrestrial organic matter and light penetration: Effects on bacterial and primary production in lakes (2009) Limnology and Oceanography, 54, pp. 2034-2040 
504 |a (2005) Standard Methods for the Examination of Water and Wastewaters. American Water Works Association, 1656p. , Water Environmental Federation, Washington, DC 
504 |a Battin, T.J., Luyssaert, S., Kaplan, L.A., Aufdenkampe, A.K., Richter, A., Tranvik, L.J., The boundless carbon cycle (2009) Nature Geosciences, 2, pp. 598-600 
504 |a Cole, J.J., Pace, M.L., Carpenter, S., Kitchell, J.F., Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations (2000) Limnology and Oceanography, 45, pp. 1718-1730 
504 |a Del Giorgio, P.A., Cole, J.J., Cimbleris, A., Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems (1997) Nature, 385, pp. 148-151 
504 |a Del Giorgio, P.A., Cole, J.J., Bacterial growth efficiency in natural aquatic systems (1998) Annual Review of Ecology and Systematics, 29, pp. 503-541 
504 |a de Tezanos Pinto, P., O’Farrell, I., Regime shifts between free-floating plants and phytoplankton: A review (2014) Hydrobiologia, 740, pp. 13-24 
504 |a Downing, J.A., Prairie, Y.T., Cole, J.J., Duarte, C.M., Tranvik, L.J., The global abundance and size distribution of lakes, ponds, and impoundments (2006) Limnology and Oceanography, 51, pp. 2388-2397 
504 |a Falkowski, P.G., Raven, J.A., (2007) Aquatic Photosynthesis, 484p. , Princeton University Press 
504 |a Holm-Hansen, O., Helbling, E.W., Techniques for measurement of primary production in phytoplankton (In Spanish) (1995) Phycological Methods Handbook (In Spanish), pp. 329-350. , K. Alveal, M. E. Ferrario, E. C. Oliveira and E. Sar (eds.), University of Concepción, Chile 
504 |a Izaguirre, I., Pizarro, H., de Tezanos Pinto, P., Rodríguez, P., O’farrell, I., Unrein, F., Gasol, J.M., Macrophyte influence on the structure and productivity of photosynthetic picoplankton in wetlands (2010) Journal of Plankton Research, 32, pp. 221-238 
504 |a Izaguirre, I., Sinistro, R., Schiaffino, M.R., Sánchez, M.L., Unrein, F., Massana, R., Grazing rates of protists in wetlands under contrasting light conditions due to floating plants (2012) Aquatic Microbial Ecology, 65, pp. 221-232 
504 |a Jansson, M., Bergström, A.K., Blomqvist, P., Drakare, S., Allochtonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes (2000) Ecology, 81, pp. 3250-3255 
504 |a Jansson, M., Karlsson, J., Jonsson, A., Carbon dioxide supersaturation promotes primary production in lakes (2012) Ecology Letters, 15, pp. 527-532 
504 |a Jasser, I., Kostrzewska-Szlakowska, I., Ejsmont-Karabin, J., Kalinowska, K., Weglenska, T., Autotrophic versus heterotrophic production and components of trophic chain in humic lakes: The role of microbial communities (2009) Polish Journal of Ecology, 57, pp. 423-439 
504 |a Jespersen, A.M., Christoffersen, K., Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent (1987) Archiv für Hydrobiologie, 109, pp. 445-454 
504 |a Jones, R.I., The influence of humic substances on lacustrine planktonic food chains (1992) Hydrobiologia, 229, pp. 73-91 
504 |a Kirchman, D.L., (2012) Processes in Microbial Ecology, 312p. , Oxford University Press 
504 |a Kirk, J.T.O., (2011) Light and Photosynthesis in Aquatic Ecosystems, 649p. , University Press, Cambridge, UK 
504 |a Kortelainen, P., Rantakari, M., Huttunen, J.T., Mattsson, T., Alm, J., Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes (2006) Global Change Biology, 12, pp. 1554-1567 
504 |a Lovett, G.M., Cole, J.J., Pace, M.L., Is net ecosystem production equal to ecosystem carbon accumulation? (2006) Ecosystems, 9, pp. 152-155 
504 |a Peixoto, R.B., Marotta, H., Bastviken, D., Enrich-Prast, A., Floating aquatic macrophytes can substantially offset open water CO2emissions from tropical floodplain lake ecosystems (2016) Ecosystems 
504 |a Reche, I., Pace, M.L., Cole, J.J., Interactions of photobleaching and inorganic nutrients in determining bacterial growth on colored dissolved organic carbon (1998) Microbial Ecology, 36, pp. 270-280 
504 |a Rodríguez, P., Pizarro, H., Phytoplankton productivity in a highly colored shallow lake of a South American floodplain (2007) Wetlands, 27, pp. 1153-1160 
504 |a Rodríguez, P., Pizarro, H., Vera, M.S., Size fractionated phytoplankton production in two humic shallow lakes with contrasting coverage of free floating plants (2012) Hydrobiologia, 691, pp. 285-298 
504 |a Rodríguez, P., Pizarro, H., Phytoplankton and periphyton production and its relation to temperature in a humic lagoon (2015) Limnologica, 55, pp. 9-12 
504 |a Roehm, C., Giesler, R., Karlsson, J., Bioavailability of terrestrial organic carbon to lake bacteria: The case of a degrading subarctic permafrost mire complex (2009) Journal of Geophysical Research: Biogeosciences, 114, p. G03006 
504 |a Simon, M., Azam, F., Protein content and protein synthesis rates of planktonic marine bacteria (1989) Marine Ecology Progress Series, 51, pp. 201-213 
504 |a Smith, D.C., Azam, F., A simple, economical method for measuring bacterial protein synthesis rates in sea water using 3H-Leucine (1992) Marine Microbial Food Webs, 6, pp. 107-109 
504 |a Stanley, E.H., Johnson, M.D., Ward, A.K., Evaluating the influence of macrophytes on algal and bacterial production in multiple habitats of a freshwater wetland (2003) Limnology and Oceanography, 48, pp. 1101-1111 
504 |a Stumm, W., Morgan, J., (1996) Aquatic Chemistry, 1040p. , Wiley, New York 
506 |2 openaire  |e Política editorial 
520 3 |a In this study, we show that depth-integrated pelagic primary production (PP) can exceed bacterioplankton production (BP) in vegetated humic shallow lakes, giving as a result an autotrophic water column, despite light restrictions and availability of organic carbon for lake bacteria. Intuitively, these conditions should favor the development of a heterotrophic water column. Instead, during our survey, BP represented between 1.3 to 5% of PP most of the time. Only once, during late summer, BP was ~71% of PP. Although we cannot conclude about the mechanisms behind the observed results, previous surveys and experimentation in the wetland allow us to hypothesize that autotrophic conditions were favored by: i) the shallow nature of the lakes, which compensates for light attenuation by organic matter when integrating production in the water column, ii) the presence of anaerobic anoxygenic photosynthetic bacteria below the macrophyte cover, and iii) high predation rates on bacterioplankton by heterotrophic flagellates below the floating plants. © 2016, Asociacion Argentina de Ecologia. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: National Council for Scientific Research 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, X815, PICT 536 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 64 
536 |a Detalles de la financiación: The authors wish to thank to the colleagues from the laboratory of Limnology from the University of Buenos Aires and R. Rodr?guez for their assistance in the field. We thank to Dr H. Pizarro for her help with the analysis of DIC and to Dr P. de Tezanos Pinto whose comments on the manuscript were much appreciated. This study was granted with funds from the Argentinean Agency of Scientific and Technological Promotion, ANPCyT (PICT 536), the University of Buenos Aires (X815) and the National Scientific and Technical Research Council from Argentina, CONICET (PIP 64). 
593 |a Defense against desertification and land conservation office (DSyLCD), Ministry of Environment and Sustainable Development (MayDS), Ciudad de Buenos Aires, Argentina 
593 |a Austral Centre for Scientific Research (CADIC-CONICET), Ushuaia, Tierra del Fuego, Argentina 
593 |a Departamento de Ecología, Genética yEvolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
690 1 0 |a FLOATING PLANTS 
690 1 0 |a PRIMARY PRODUCTION 
690 1 0 |a AQUATIC PLANT 
690 1 0 |a BACTERIOPLANKTON 
690 1 0 |a DEPTH 
690 1 0 |a HETEROTROPHY 
690 1 0 |a HUMID ENVIRONMENT 
690 1 0 |a LAGOON 
690 1 0 |a ORGANIC CARBON 
690 1 0 |a PELAGIC ECOSYSTEM 
690 1 0 |a PHOTOSYNTHESIS 
690 1 0 |a PRIMARY PRODUCTION 
690 1 0 |a SHALLOW WATER 
690 1 0 |a WATER COLUMN 
690 1 0 |a WETLAND 
690 1 0 |a MASTIGOPHORA (FLAGELLATES) 
690 1 0 |a PHOTOBACTERIA 
700 1 |a Rodriguez, Patricia Laura 
773 0 |d Asociacion Argentina de Ecologia, 2016  |g v. 26  |h pp. 305-310  |k n. 3  |p Ecol. Austral  |x 03275477  |w (AR-BaUEN)CENRE-1929  |t Ecologia Austral 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007595816&partnerID=40&md5=311893c2ebc09cc9cf21fe319c1160cf  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03275477_v26_n3_p305_AguilarZurita  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03275477_v26_n3_p305_AguilarZurita  |y Registro en la Biblioteca Digital 
961 |a paper_03275477_v26_n3_p305_AguilarZurita  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76473