On a generalization of the seating couples problem

We prove a conjecture of Adamaszek generalizing the seating couples problem to the case of 2n seats. Concretely, we prove that given a positive integer n and d1,…,dn∈(Z/2n)× we can partition Z/2n into n pairs with differences d1,…,dn. © 2016 Elsevier B.V.

Guardado en:
Detalles Bibliográficos
Autor principal: Kohen, D.
Otros Autores: Sadofschi Costa, I.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03032caa a22004337a 4500
001 PAPER-15484
003 AR-BaUEN
005 20230518204613.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84978374859 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a DSMHA 
100 1 |a Kohen, D. 
245 1 3 |a On a generalization of the seating couples problem 
260 |b Elsevier  |c 2016 
270 1 0 |m Kohen, D.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: dkohen@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Chowla, I., A theorem on the addition of residue classes: application to the number Γ(k) in Waring's problem (1937) Q. J. Math., os-8 (1), pp. 99-102 
504 |a Hall, M., A combinatorial problem on abelian groups (1952) Proc. Amer. Math. Soc., 3, pp. 584-587 
504 |a Karasev, R.N., Petrov, F.V., Partitions of nonzero elements of a finite field into pairs (2012) Israel J. Math., 192 (1), pp. 143-156 
504 |a Kohen, D., Sadofschi, I., A new approach on the seating couples problem arXiv:1006.2571; Mezei, T.R., Seating couples and Tic-Tac-Toe (2013), (Master's thesis) Eötvös Loránd University; Preissmann, E., Mischler, M., Seating couples around the King's table and a new characterization of prime numbers (2009) Amer. Math. Monthly, 116 (3), pp. 268-272 
520 3 |a We prove a conjecture of Adamaszek generalizing the seating couples problem to the case of 2n seats. Concretely, we prove that given a positive integer n and d1,…,dn∈(Z/2n)× we can partition Z/2n into n pairs with differences d1,…,dn. © 2016 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: We would like to thank the referee for the useful comments and suggestions. DK was partially supported by a CONICET doctoral fellowship. 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
593 |a IMAS, CONICET, Argentina 
690 1 0 |a CAUCHY–DAVENPORT 
690 1 0 |a COUPLES 
690 1 0 |a PARTITION 
690 1 0 |a SEATING 
690 1 0 |a SUMSET 
700 1 |a Sadofschi Costa, I. 
773 0 |d Elsevier, 2016  |g v. 339  |h pp. 3017-3019  |k n. 12  |p Discrete Math  |x 0012365X  |w (AR-BaUEN)CENRE-309  |t Discrete Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978374859&doi=10.1016%2fj.disc.2016.06.018&partnerID=40&md5=019ac6b5dc7a9cd1313fc1b4d3bde523  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.disc.2016.06.018  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0012365X_v339_n12_p3017_Kohen  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0012365X_v339_n12_p3017_Kohen  |y Registro en la Biblioteca Digital 
961 |a paper_0012365X_v339_n12_p3017_Kohen  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76437