On a generalization of the seating couples problem
We prove a conjecture of Adamaszek generalizing the seating couples problem to the case of 2n seats. Concretely, we prove that given a positive integer n and d1,…,dn∈(Z/2n)× we can partition Z/2n into n pairs with differences d1,…,dn. © 2016 Elsevier B.V.
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier
2016
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 03032caa a22004337a 4500 | ||
|---|---|---|---|
| 001 | PAPER-15484 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204613.0 | ||
| 008 | 190411s2016 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84978374859 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a DSMHA | ||
| 100 | 1 | |a Kohen, D. | |
| 245 | 1 | 3 | |a On a generalization of the seating couples problem |
| 260 | |b Elsevier |c 2016 | ||
| 270 | 1 | 0 | |m Kohen, D.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: dkohen@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Chowla, I., A theorem on the addition of residue classes: application to the number Γ(k) in Waring's problem (1937) Q. J. Math., os-8 (1), pp. 99-102 | ||
| 504 | |a Hall, M., A combinatorial problem on abelian groups (1952) Proc. Amer. Math. Soc., 3, pp. 584-587 | ||
| 504 | |a Karasev, R.N., Petrov, F.V., Partitions of nonzero elements of a finite field into pairs (2012) Israel J. Math., 192 (1), pp. 143-156 | ||
| 504 | |a Kohen, D., Sadofschi, I., A new approach on the seating couples problem arXiv:1006.2571; Mezei, T.R., Seating couples and Tic-Tac-Toe (2013), (Master's thesis) Eötvös Loránd University; Preissmann, E., Mischler, M., Seating couples around the King's table and a new characterization of prime numbers (2009) Amer. Math. Monthly, 116 (3), pp. 268-272 | ||
| 520 | 3 | |a We prove a conjecture of Adamaszek generalizing the seating couples problem to the case of 2n seats. Concretely, we prove that given a positive integer n and d1,…,dn∈(Z/2n)× we can partition Z/2n into n pairs with differences d1,…,dn. © 2016 Elsevier B.V. |l eng | |
| 536 | |a Detalles de la financiación: We would like to thank the referee for the useful comments and suggestions. DK was partially supported by a CONICET doctoral fellowship. | ||
| 593 | |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina | ||
| 593 | |a IMAS, CONICET, Argentina | ||
| 690 | 1 | 0 | |a CAUCHY–DAVENPORT |
| 690 | 1 | 0 | |a COUPLES |
| 690 | 1 | 0 | |a PARTITION |
| 690 | 1 | 0 | |a SEATING |
| 690 | 1 | 0 | |a SUMSET |
| 700 | 1 | |a Sadofschi Costa, I. | |
| 773 | 0 | |d Elsevier, 2016 |g v. 339 |h pp. 3017-3019 |k n. 12 |p Discrete Math |x 0012365X |w (AR-BaUEN)CENRE-309 |t Discrete Mathematics | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978374859&doi=10.1016%2fj.disc.2016.06.018&partnerID=40&md5=019ac6b5dc7a9cd1313fc1b4d3bde523 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.disc.2016.06.018 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_0012365X_v339_n12_p3017_Kohen |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0012365X_v339_n12_p3017_Kohen |y Registro en la Biblioteca Digital |
| 961 | |a paper_0012365X_v339_n12_p3017_Kohen |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 76437 | ||