Structure, electrocatalysis and dynamics of immobilized cytochrome PccH and its microperoxidase

Geobacter sulfurreducens cells have the ability to exchange electrons with conductive materials, and the periplasmic cytochrome PccH plays an essential role in the direct electrode-to-cell electron transfer in this bacterium. It has atypically low redox potential and unique structural features that...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Silveira, C.M
Otros Autores: Castro, M.A, Dantas, J.M, Salgueiro, C., Murgida, D.H, Todorovic, S.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Royal Society of Chemistry 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13568caa a22014657a 4500
001 PAPER-15410
003 AR-BaUEN
005 20230518204608.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85019890539 
024 7 |2 cas  |a cytochrome c, 9007-43-6, 9064-84-0; peroxidase, 9003-99-0; Bacterial Proteins; Cytochromes c; microperoxidase; Peroxidases 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PPCPF 
100 1 |a Silveira, C.M. 
245 1 0 |a Structure, electrocatalysis and dynamics of immobilized cytochrome PccH and its microperoxidase 
260 |b Royal Society of Chemistry  |c 2017 
270 1 0 |m Silveira, C.M.; Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Portugal; email: celiasilveira@itqb.unl.pt 
506 |2 openaire  |e Política editorial 
504 |a Lovley, D.R., (2012) Annu. Rev. Microbiol., 66, pp. 391-409 
504 |a Lovley, D.R., Ueki, T., Zhang, T., Malvankar, N.S., Shrestha, P.M., Flanagan, K.A., Aklujkar, M., Nevin, K.P., (2011) Adv. Microb. Physiol., 59, pp. 1-100 
504 |a Strycharz, S.M., Glaven, R.H., Coppi, M.V., Gannon, S.M., Perpetua, L.A., Liu, A., Nevin, K.P., Lovley, D.R., (2011) Bioelectrochemistry, 80, pp. 142-150 
504 |a Dantas, J.M., Tomaz, D.M., Morgado, L., Salgueiro, C.A., (2013) FEBS Lett., 587, pp. 2662-2668 
504 |a Dantas, J.M., Campelo, L.M., Duke, N.E., Salgueiro, C.A., Pokkuluri, P.R., (2015) FEBS J., 282, pp. 2215-2231 
504 |a Logan, B.E., Rabaey, K., (2012) Science, 337, pp. 686-690 
504 |a Lovley, D.R., (2011) Environ. Microbiol. Rep., 3, pp. 27-35 
504 |a Rabaey, K., Rozendal, R.A., (2010) Nat. Rev. Microbiol., 8, pp. 706-716 
504 |a Nevin, K.P., Woodard, T.L., Franks, A.E., Summers, Z.M., Lovley, D.R., (2010) MBio, 1, pp. e00103-00110 
504 |a Diederix, R.E.M., Ubbink, M., Canters, G.W., (2001) Eur. J. Biochem., 268, pp. 4207-4216 
504 |a Everse, J., Liu, C.J.J., Coates, P.W., (2011) Biochim. Biophys. Acta, Mol. Basis Dis., 1812, pp. 1138-1145 
504 |a Yagati, A.K., Lee, T., Min, J., Choi, J.-W., (2012) Colloids Surf., B, 92, pp. 161-167 
504 |a Zhu, A., Tian, Y., Liu, H., Luo, Y., (2009) Biomaterials, 30, pp. 3183-3188 
504 |a Ranieri, A., Millo, D., Di Rocco, G., Battistuzzi, G., Bortolotti, C.A., Borsari, M., Sola, M., (2015) J. Biol. Inorg. Chem., 20, pp. 531-540 
504 |a Ranieri, A., Battistuzzi, G., Borsari, M., Bortolotti, C.A., Di Rocco, G., Monari, S., Sola, M., (2012) Electrochem. Commun., 14, pp. 29-31 
504 |a Molinas, M.F., Benavides, L., Castro, M.A., Murgida, D.H., (2015) Bioelectrochemistry, 105, pp. 25-33 
504 |a Capdevila, D.A., Oviedo Rouco, S., Tomasina, F., Tortora, V., Demicheli, V., Radi, R., Murgida, D.H., (2015) Biochemistry, 54, pp. 7491-7504 
504 |a Wang, L., Waldeck, D.H., (2008) J. Phys. Chem. C, 112, pp. 1351-1356 
504 |a Wang, Z.-H., Lin, Y.-W., Rosell, F.I., Ni, F.-Y., Lu, H.-J., Yang, P.-Y., Tan, X.-S., Mauk, A.G., (2007) ChemBioChem, 8, pp. 607-609 
504 |a Santos, T.C., De Oliveira, A.R., Dantas, J.M., Salgueiro, C.A., Cordas, C.M., (2015) Biochim. Biophys. Acta, 1847, pp. 1113-1118 
504 |a Murgida, D.H., Hildebrandt, P., (2004) Acc. Chem. Res., 37, pp. 854-861 
504 |a Sezer, M., Millo, D., Weidinger, I.M., Zebger, I., Hildebrandt, P., (2012) IUBMB Life, 64, pp. 455-464 
504 |a Todorovic, S., Jung, C., Hildebrandt, P., Murgida, D.H., (2006) J. Biol. Inorg. Chem., 11, pp. 119-127 
504 |a Todorovic, S., Pereira, M.M., Bandeiras, T.M., Teixeira, M., Hildebrandt, P., Murgida, D.H., (2005) J. Am. Chem. Soc., 127, pp. 13561-13566 
504 |a Murgida, D.H., Hildebrandt, P., (2001) J. Phys. Chem. B, 105, pp. 1578-1586 
504 |a Döpner, S., Hildebrandt, P., Grant Mauk, A., Lenk, H., Stempfle, W., (1996) Spectrochim. Acta, Part A, 52, pp. 573-584 
504 |a Hildebrandt, A.G., Roots, I., (1975) Arch. Biochem. Biophys., 171, pp. 385-397 
504 |a Mandell, D.J., Coutsias, E.A., Kortemme, T., (2009) Nat. Methods, 6, pp. 551-552 
504 |a Rai, B., Sathish, P., Malhotra, C.P., Ayappa, K.G., (2004) Langmuir, 20, pp. 3138-3144 
504 |a Marmisollé, W.A., Capdevila, D.A., De La Llave, E., Williams, F.J., Murgida, D.H., (2013) Langmuir, 29, pp. 5351-5359 
504 |a Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Woods, R.J., (2005) J. Comput. Chem., 26, pp. 1668-1688 
504 |a Paggi, D.A., Martín, D.F., Kranich, A., Hildebrandt, P., Martí, M.A., Murgida, D.H., (2009) Electrochim. Acta, 54, pp. 4963-4970 
504 |a Park, S., Schulten, K., (2004) J. Chem. Phys., 120, pp. 5946-5961 
504 |a Onufriev, A., Bashford, D., Case, D.A., (2004) Proteins: Struct., Funct., Bioinf., 55, pp. 383-394 
504 |a Alvarez-Paggi, D., Martín, D.F., Debiase, P.M., Hildebrandt, P., Martí, M.A., Murgida, D.H., (2010) J. Am. Chem. Soc., 132, pp. 5769-5778 
504 |a Alvarez-Paggi, D., Meister, W., Kuhlmann, U., Weidinger, I., Tenger, K., Zimányi, L., Rákhely, G., Murgida, D.H., (2013) J. Phys. Chem. B, 117, pp. 6061-6068 
504 |a Molinas, M.F., De Candia, A., Szajnman, S.H., Rodriguez, J.B., Marti, M., Pereira, M., Teixeira, M., Murgida, D.H., (2011) Phys. Chem. Chem. Phys., 13, pp. 18088-18098 
504 |a Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., Haak, J.R., (1984) J. Chem. Phys., 81, pp. 3684-3690 
504 |a Siebert, F., Hildebrandt, P., (2008) Vibrational Spectroscopy in Life Science, pp. 227-282. , Wiley-VCH Verlag GmbH & Co. KGaA 
504 |a Oellerich, S., Wackerbarth, H., Hildebrandt, P., (2002) J. Phys. Chem. B, 106, pp. 6566-6580 
504 |a Todorovic, S., Verissimo, A., Wisitruangsakul, N., Zebger, I., Hildebrandt, P., Pereira, M.M., Teixeira, M., Murgida, D.H., (2008) J. Phys. Chem. B, 112, pp. 16952-16959 
504 |a Ash, P.A., Vincent, K.A., (2012) Chem. Commun., 48, pp. 1400-1409 
504 |a Murgida, D.H., Hildebrandt, P., (2005) Phys. Chem. Chem. Phys., 7, pp. 3773-3784 
504 |a Todorovic, S., Hildebrandt, P., Martins, L.O., (2015) Phys. Chem. Chem. Phys., 17, pp. 11954-11957 
504 |a Khoa, H., Sezer, L.M., Wisitruangsakul, N., Feng, J.-J., Kranich, A., Millo, D., Weidinger, I.M., Hildebrandt, P., (2011) FEBS J., 278, pp. 1382-1390 
504 |a Murgida, D.H., Hildebrandt, P., (2008) Chem. Soc. Rev., 37, pp. 937-945 
504 |a Murgida, D., Hildebrandt, P., (2006) Surface-Enhanced Raman Scattering: Physics and Applications, pp. 313-334. , ed. K. Kneipp, M. Moskovits and H. Kneipp, Springer, Berlin, Heidelberg 
504 |a Sezer, M., Genebra, T., Mendes, S., Martins, L.O., Todorovic, S., (2012) Soft Matter, 8, pp. 10314-10321 
504 |a Silveira, C.M., Quintas, P.O., Moura, I., Moura, J.J., Hildebrandt, P., Almeida, M.G., Todorovic, S., (2015) PLoS One, 10, p. e0129940 
504 |a Hildebrandt, P., Stockburger, M., (1989) Biochemistry, 28, pp. 6710-6721 
504 |a Smulevich, G., Spiro, T.G., (1985) J. Phys. Chem., 89, pp. 5168-5173 
504 |a Monk, P., (2007) Fundamentals of Electroanalytical Chemistry, , John Wiley & Sons, Ltd, Chichester 
504 |a Murgida, D.H., (2006) Top. Appl. Phys., 103, pp. 313-334 
504 |a Battistuzzi, G., Borsari, M., Sola, M., Francia, F., (1997) Biochemistry, 36, pp. 16247-16258 
504 |a Rivas, L., Murgida, D.H., Hildebrandt, P., (2002) J. Phys. Chem. B, 106, pp. 4823-4830 
504 |a Murgida, D.H., Hildebrandt, P., Wei, J., He, Y.F., Liu, H., Waldeck, D.H., (2004) J. Phys. Chem. B, 108, pp. 2261-2269 
504 |a Marques, H.M., (2007) Dalton Trans., pp. 4371-4385 
504 |a Marques, H.M., Perry, C.B., (1999) J. Inorg. Biochem., 75, pp. 281-291 
504 |a Hammack, B., Godbole, S., Bowler, B.E., (1998) J. Mol. Biol., 275, pp. 719-724 
504 |a Suruga, K., Murakami, K., Taniyama, Y., Hama, T., Chida, H., Satoh, T., Yamada, S., Oku, T., (2004) Biochem. Biophys. Res. Commun., 315, pp. 815-822 
504 |a Wackerbarth, H., Hildebrandt, P., (2003) ChemPhysChem, 4, pp. 714-724 
520 3 |a Geobacter sulfurreducens cells have the ability to exchange electrons with conductive materials, and the periplasmic cytochrome PccH plays an essential role in the direct electrode-to-cell electron transfer in this bacterium. It has atypically low redox potential and unique structural features that differ from those observed in other c-type cytochromes. We report surface enhanced resonance Raman spectroscopic and electrochemical characterization of the immobilized PccH, together with molecular dynamics simulations that allow for the rationalization of experimental observations. Upon attachment to electrodes functionalized with partially or fully hydrophobic self-assembled monolayers, PccH displays a distribution of native and non-native heme spin configurations, similar to those observed in horse heart cytochrome c. The native structural and thermodynamic features of PccH are preserved upon attachment mixed hydrophobic (-CH 3 /-NH 2 ) surfaces, while pure -OH, -NH 2 and -COOH surfaces do not provide suitable platforms for its adsorption, indicating that its still unknown physiological redox partner might be membrane integrated. Neither of the employed immobilization strategies results in electrocatalytically active PccH capable of the reduction of hydrogen peroxide. Pseudoperoxidase activity is observed in immobilized microperoxidase, which is enzymatically produced from PccH and spectroscopically characterized. Further improvement of PccH microperoxidase stability is required for its application in electrochemical biosensing of hydrogen peroxide. © the Owner Societies.  |l eng 
536 |a Detalles de la financiación: Canadian Anesthesiologists' Society, SFRH/BD/89701/2012, UID/Multi/04378/2013 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, 20020130100206BA 
536 |a Detalles de la financiación: SFRH/BPD/ 79566/2011, CMS, PTDC/ BBB-BQB/3554/2014, IF/00710/2014 
536 |a Detalles de la financiación: Fundação para a Ciência e a Tecnologia 
536 |a Detalles de la financiación: Manitoba Arts Council 
536 |a Detalles de la financiación: POCI, COMPETE2020 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT2011-1249, PICT2015-133 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: MS data were provided by the UniMS - Mass Spectrometry Unit, ITQB/iBET, Oeiras, Portugal. This work was financially supported by: Project LISBOA-01-0145-FEDER-007660 (Microbiologia Molecular, Estrutural e Celular) funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionaliza?a ?o (POCI) and by national funds through FCT - Funda?a?o para a Ci?ncia e a Tecnologia, which ST and CMS acknowledge, together with IF/00710/2014 (ST) and SFRH/BPD/ 79566/2011 (CMS). This work was also supported by grants PTDC/ BBB-BQB/3554/2014 (to CAS), SFRH/BD/89701/2012 (to JMD) and UID/Multi/04378/2013 from Funda?a?o para a Ci?ncia e a Tecnologia. DHM thanks the financial support from ANPCyT (PICT2015-133; PICT2011-1249) and UBACYT (20020130100206BA). MAC and DHM are staff members of CONICET. 
593 |a Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras, 2780-157, Portugal 
593 |a UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Monte de Caparica, 2829-516, Portugal 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
690 1 0 |a BACTERIAL PROTEIN 
690 1 0 |a CYTOCHROME C 
690 1 0 |a PEROXIDASE 
690 1 0 |a ADSORPTION 
690 1 0 |a ELECTRODE 
690 1 0 |a ELECTRON 
690 1 0 |a GEOBACTER 
690 1 0 |a METABOLISM 
690 1 0 |a RAMAN SPECTROMETRY 
690 1 0 |a THERMODYNAMICS 
690 1 0 |a ADSORPTION 
690 1 0 |a BACTERIAL PROTEINS 
690 1 0 |a CYTOCHROMES C 
690 1 0 |a ELECTRODES 
690 1 0 |a ELECTRONS 
690 1 0 |a GEOBACTER 
690 1 0 |a PEROXIDASES 
690 1 0 |a SPECTRUM ANALYSIS, RAMAN 
690 1 0 |a THERMODYNAMICS 
700 1 |a Castro, M.A. 
700 1 |a Dantas, J.M. 
700 1 |a Salgueiro, C. 
700 1 |a Murgida, D.H. 
700 1 |a Todorovic, S. 
773 0 |d Royal Society of Chemistry, 2017  |g v. 19  |h pp. 8908-8918  |k n. 13  |p Phys. Chem. Chem. Phys.  |x 14639076  |t Physical Chemistry Chemical Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019890539&doi=10.1039%2fc6cp08361g&partnerID=40&md5=8d14e6ceb6f46a46cace51b9e2eb083b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1039/c6cp08361g  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14639076_v19_n13_p8908_Silveira  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14639076_v19_n13_p8908_Silveira  |y Registro en la Biblioteca Digital 
961 |a paper_14639076_v19_n13_p8908_Silveira  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 76363