Hypercyclic behavior of some non-convolution operators on H(CN)
We study hypercyclicity properties of a family of non-convolution operators defined on the spaces of entire functions on CN. These operators are a composition of a differentiation operator and an affine composition operator, and are analogues of operators studied by Aron and Markose on H(C). The hyp...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
Theta Foundation
2017
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 05225caa a22006017a 4500 | ||
---|---|---|---|
001 | PAPER-15408 | ||
003 | AR-BaUEN | ||
005 | 20230518204608.0 | ||
008 | 190410s2017 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-85013433885 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Muro, S. | |
245 | 1 | 0 | |a Hypercyclic behavior of some non-convolution operators on H(CN) |
260 | |b Theta Foundation |c 2017 | ||
506 | |2 openaire |e Política editorial | ||
504 | |a Aron, R.M., Markose, D., On universal functions, in Satellite Conference on Infinite Dimensional Function Theory (2004) J. Korean Math. Soc, 41, pp. 65-76 | ||
504 | |a Bayart, F., Matheron, E., Mixing operators and small subsets of the circle (2016) J. Reine Angew. Math, 715, pp. 75-123 | ||
504 | |a Bernal-González, L., Universal entire functions for affine endomorphisms of CN (2005) J. Math. Anal. Appl, 305, pp. 690-697 | ||
504 | |a Bernal-González, L., Montes-Rodríguez, A., Universal functions for composition operators (1995) Complex Variables Theory Appl, 27, pp. 47-56 | ||
504 | |a Birkhoff, G.D., Démonstration d'un théorème élémentaire sur les fonctions entières (1929) C. R. Acad. Sci. Paris, 189, pp. 473-475 | ||
504 | |a Bonilla, A., Grosse-Erdmann, K.-G., On a theorem of Godefroy and Shapiro (2006) Integral Equations Operator Theory, 56, pp. 151-162 | ||
504 | |a Bonilla, A., Grosse-Erdmann, K.-G., Frequently hypercyclic operators and vectors (2007) Ergodic Theory Dynam. Systems, 27, pp. 383-404 | ||
504 | |a Conejero, J.A., Müller, V., On the universality of multipliers on H(C) (2010) J. Approx. Theory, 162, pp. 1025-1032 | ||
504 | |a Fernández, G., Hallack, A.A., Remarks on a result about hypercyclic nonconvolution operators (2005) J. Math. Anal. Appl, 309, pp. 52-55 | ||
504 | |a Godefroy, G., Shapiro, J.H., Operators with dense, invariant, cyclic vector manifolds (1991) J. Funct. Anal, 98, pp. 229-269 | ||
504 | |a Grosse-Erdmann, K.-G., Peris Manguillot, A., (2011) Linear Chaos, , Universitext, Springer, London | ||
504 | |a Gupta, M., Mundayadan, A., q-frequently hypercyclic operators (2015) Banach J. Math. Anal, 9, pp. 114-126 | ||
504 | |a León-Saavedra, F., Romero-De La Rosa, P., Fixed points and orbits of nonconvolution operators (2014) Fixed Point Theory Appl, 1, pp. 1-15 | ||
504 | |a Maclane, G.R., Sequences of derivatives and normal families (1952) J. Anal. Math, 2, pp. 72-87 | ||
504 | |a Murillo-Arcila, M., Peris, A., Strong mixing measures for linear operators and frequent hypercyclicity (2013) J. Math. Anal. Appl, 398, pp. 462-465 | ||
504 | |a Muro, S., Pinasco, D., Savransky, M., Strongly mixing convolution operators on Fréchet spaces of holomorphic functions (2014) Integral Equations Operator Theory, 80, pp. 453-468 | ||
504 | |a Petersson, H., Supercyclic and hypercyclic non-convolution operators (2006) J. Operator Theory, 55, pp. 135-152 | ||
520 | 3 | |a We study hypercyclicity properties of a family of non-convolution operators defined on the spaces of entire functions on CN. These operators are a composition of a differentiation operator and an affine composition operator, and are analogues of operators studied by Aron and Markose on H(C). The hypercyclic behavior is more involved than in the one dimensional case, and depends on several parameters involved. © by Theta, 2017. |l eng | |
536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2011-1456, PICT 11-0738 | ||
536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas | ||
536 | |a Detalles de la financiación: Work partially supported by PIP 11220130100329CO, PIP 11220130100422CO, UBACyT 20020130300052BA, ANPCyT PICT 2011-1456, ANPCyT PICT 11-0738 and CONICET. | ||
593 | |a Departamento de Matemática - Pab I, Facultad De Cs. Exactas Y Naturales, Universidad de Buenos Aires, (1428), Ciudad Autónoma de Buenos Aires, Argentina | ||
593 | |a Departamento de Matemáticas Y Estadística, Universidad Torcuato di Tella, Av. Figueroa Alcorta 7350, (1428), Ciudad Autónoma de Buenos Aires, Argentina | ||
690 | 1 | 0 | |a COMPOSITION OPERATORS |
690 | 1 | 0 | |a DIFFERENTIATION OPERATORS |
690 | 1 | 0 | |a FREQUENTLY HYPERCYCLIC OPERATORS |
690 | 1 | 0 | |a NON-CONVOLUTION OPERATORS |
690 | 1 | 0 | |a STRONGLY MIXING OPERATORS |
700 | 1 | |a Pinasco, D. | |
700 | 1 | |a Savransky, M. | |
773 | 0 | |d Theta Foundation, 2017 |g v. 77 |h pp. 39-59 |k n. 1 |p J. Oper. Theory |x 03794024 |t Journal of Operator Theory | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013433885&doi=10.7900%2fjot.2015oct08.2127&partnerID=40&md5=83164989d58ce74f4b49748f8191d416 |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.7900/jot.2015oct08.2127 |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_03794024_v77_n1_p39_Muro |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03794024_v77_n1_p39_Muro |y Registro en la Biblioteca Digital |
961 | |a paper_03794024_v77_n1_p39_Muro |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
999 | |c 76361 |