Hypercyclic behavior of some non-convolution operators on H(CN)

We study hypercyclicity properties of a family of non-convolution operators defined on the spaces of entire functions on CN. These operators are a composition of a differentiation operator and an affine composition operator, and are analogues of operators studied by Aron and Markose on H(C). The hyp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Muro, S.
Otros Autores: Pinasco, D., Savransky, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Theta Foundation 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05225caa a22006017a 4500
001 PAPER-15408
003 AR-BaUEN
005 20230518204608.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85013433885 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Muro, S. 
245 1 0 |a Hypercyclic behavior of some non-convolution operators on H(CN) 
260 |b Theta Foundation  |c 2017 
506 |2 openaire  |e Política editorial 
504 |a Aron, R.M., Markose, D., On universal functions, in Satellite Conference on Infinite Dimensional Function Theory (2004) J. Korean Math. Soc, 41, pp. 65-76 
504 |a Bayart, F., Matheron, E., Mixing operators and small subsets of the circle (2016) J. Reine Angew. Math, 715, pp. 75-123 
504 |a Bernal-González, L., Universal entire functions for affine endomorphisms of CN (2005) J. Math. Anal. Appl, 305, pp. 690-697 
504 |a Bernal-González, L., Montes-Rodríguez, A., Universal functions for composition operators (1995) Complex Variables Theory Appl, 27, pp. 47-56 
504 |a Birkhoff, G.D., Démonstration d'un théorème élémentaire sur les fonctions entières (1929) C. R. Acad. Sci. Paris, 189, pp. 473-475 
504 |a Bonilla, A., Grosse-Erdmann, K.-G., On a theorem of Godefroy and Shapiro (2006) Integral Equations Operator Theory, 56, pp. 151-162 
504 |a Bonilla, A., Grosse-Erdmann, K.-G., Frequently hypercyclic operators and vectors (2007) Ergodic Theory Dynam. Systems, 27, pp. 383-404 
504 |a Conejero, J.A., Müller, V., On the universality of multipliers on H(C) (2010) J. Approx. Theory, 162, pp. 1025-1032 
504 |a Fernández, G., Hallack, A.A., Remarks on a result about hypercyclic nonconvolution operators (2005) J. Math. Anal. Appl, 309, pp. 52-55 
504 |a Godefroy, G., Shapiro, J.H., Operators with dense, invariant, cyclic vector manifolds (1991) J. Funct. Anal, 98, pp. 229-269 
504 |a Grosse-Erdmann, K.-G., Peris Manguillot, A., (2011) Linear Chaos, , Universitext, Springer, London 
504 |a Gupta, M., Mundayadan, A., q-frequently hypercyclic operators (2015) Banach J. Math. Anal, 9, pp. 114-126 
504 |a León-Saavedra, F., Romero-De La Rosa, P., Fixed points and orbits of nonconvolution operators (2014) Fixed Point Theory Appl, 1, pp. 1-15 
504 |a Maclane, G.R., Sequences of derivatives and normal families (1952) J. Anal. Math, 2, pp. 72-87 
504 |a Murillo-Arcila, M., Peris, A., Strong mixing measures for linear operators and frequent hypercyclicity (2013) J. Math. Anal. Appl, 398, pp. 462-465 
504 |a Muro, S., Pinasco, D., Savransky, M., Strongly mixing convolution operators on Fréchet spaces of holomorphic functions (2014) Integral Equations Operator Theory, 80, pp. 453-468 
504 |a Petersson, H., Supercyclic and hypercyclic non-convolution operators (2006) J. Operator Theory, 55, pp. 135-152 
520 3 |a We study hypercyclicity properties of a family of non-convolution operators defined on the spaces of entire functions on CN. These operators are a composition of a differentiation operator and an affine composition operator, and are analogues of operators studied by Aron and Markose on H(C). The hypercyclic behavior is more involved than in the one dimensional case, and depends on several parameters involved. © by Theta, 2017.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2011-1456, PICT 11-0738 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Work partially supported by PIP 11220130100329CO, PIP 11220130100422CO, UBACyT 20020130300052BA, ANPCyT PICT 2011-1456, ANPCyT PICT 11-0738 and CONICET. 
593 |a Departamento de Matemática - Pab I, Facultad De Cs. Exactas Y Naturales, Universidad de Buenos Aires, (1428), Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Departamento de Matemáticas Y Estadística, Universidad Torcuato di Tella, Av. Figueroa Alcorta 7350, (1428), Ciudad Autónoma de Buenos Aires, Argentina 
690 1 0 |a COMPOSITION OPERATORS 
690 1 0 |a DIFFERENTIATION OPERATORS 
690 1 0 |a FREQUENTLY HYPERCYCLIC OPERATORS 
690 1 0 |a NON-CONVOLUTION OPERATORS 
690 1 0 |a STRONGLY MIXING OPERATORS 
700 1 |a Pinasco, D. 
700 1 |a Savransky, M. 
773 0 |d Theta Foundation, 2017  |g v. 77  |h pp. 39-59  |k n. 1  |p J. Oper. Theory  |x 03794024  |t Journal of Operator Theory 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013433885&doi=10.7900%2fjot.2015oct08.2127&partnerID=40&md5=83164989d58ce74f4b49748f8191d416  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.7900/jot.2015oct08.2127  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03794024_v77_n1_p39_Muro  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03794024_v77_n1_p39_Muro  |y Registro en la Biblioteca Digital 
961 |a paper_03794024_v77_n1_p39_Muro  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76361