On null sequences for Banach operator ideals, trace duality and approximation properties

Let A be a Banach operator ideal and X be a Banach space. We undertake the study of the vector space of A-null sequences of Carl and Stephani on X, c0,A(X), from a unified point of view after we introduce a norm which makes it a Banach space. To give accurate results we consider local versions of th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lassalle, S.
Otros Autores: Turco, P.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Wiley-VCH Verlag 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08665caa a22008537a 4500
001 PAPER-15400
003 AR-BaUEN
005 20230607131904.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85017445453 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Lassalle, S. 
245 1 3 |a On null sequences for Banach operator ideals, trace duality and approximation properties 
260 |b Wiley-VCH Verlag  |c 2017 
270 1 0 |m Lassalle, S.; Departamento de Matemática, Universidad de San Andrés, Vito Dumas 284, (B1644BID), Argentina; email: slassalle@udesa.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Ain, K., Lillemets, R., Oja, E., Compact operators which are defined by ℓp-spaces (2012) Quaest. Math., 35, pp. 145-159 
504 |a Ain, K., Oja, E., A description of relatively (p;r)-compact sets (2012) Acta Comment. Univ. Tartu. Math., 16, pp. 227-232 
504 |a Ain, K., Oja, E., On (p,r)-null sequences and their relatives (2015) Math. Nachr., 288, pp. 1569-1580 
504 |a Carl, B., Stephani, I., On A-compact operators, generalized entropy numbers and entropy ideals (1984) Math. Nachr., 199, pp. 77-95 
504 |a Choi, Y.S., Kim, J.M., The dual space of (L(X,Y);τp) and the p-approximation property (2010) J. Funct. Anal., 259, pp. 2437-2454 
504 |a Defant, A., Floret, K., (1993) Tensor Norms and Operators Ideal, , North-Holland Publishing Co., Amsterdam 
504 |a Delgado, J.M., Oja, E., Piñeiro, C., Serrano, E., The p-approximation property in terms of density of finite rank operators (2009) J. Math. Anal. Appl., 354, pp. 159-164 
504 |a Delgado, J.M., Piñeiro, C., Serrano, E., Density of finite rank operators in the Banach space of p-compact operators (2010) J. Math. Anal. Appl., 370, pp. 498-505 
504 |a Diestel, J., Fourie, J.H., Swart, J., (2008) The Metric Theory of Tensor Products, Grothendieck's résumé revisited, , American Mathematical Society, Providence, RI 
504 |a Diestel, J., Jarchow, H., Tonge, A., (1995) Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, 43. , Cambridge University Press, Cambridge 
504 |a Fourie, J., Swart, J., Banach ideals of p-compact operators (1979) Manuscripta Math., 26, pp. 349-362 
504 |a Fourie, J., Swart, J., Tensor products and Banach ideals of p-compact operators (1981) Manuscripta Math., 35, pp. 343-351 
504 |a Galicer, D., Lassalle, S., Turco, P., The ideal of p-compact operators: a tensor product approach (2012) Studia Math., 211, pp. 269-286 
504 |a Gordon, Y., Lewis, D., Retheford, J., Banach ideals of operators with applications (1973) J. Funct. Anal., 14, pp. 85-129 
504 |a Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires (1955) Memoirs of the American Mathematical Society, 16, p. 140 
504 |a Jarchow, H., Ott, R., On trace ideals (1982) Math. Nachr., 108, pp. 23-37 
504 |a Kim, J.M., Unconditionally p-null sequences and uncoditionally p-compact operators (2014) Studia Math., 224, pp. 133-142 
504 |a Kim, J.M., The Kup-approximation property and its duality (2015) J. Aust. Math. Soc., 98, pp. 364-374 
504 |a Kim, J.M., Duality between the K1- and the Ku1-approximation properties, , To appear in Houston J. Math 
504 |a Lassalle, S., Oja, E., Turco, P., Weaker relatives of the bounded approximation property for a Banach operator ideal (2016) J. Approx. Theory, 205, pp. 25-42 
504 |a Lassalle, S., Turco, P., On p-compact mappings and the p-approximation properties (2012) J. Math. Anal. Appl., 389, pp. 1204-1221 
504 |a Lassalle, S., Turco, P., The Banach ideal of A-compact operators and related approximation properties (2013) J. Funct. Anal., 265, pp. 2452-2464 
504 |a Lima, A., Lima, V., Oja, E., Bounded approximation properties via integral and nuclear operators (2010) Proc. Amer. Math. Soc., 138, pp. 287-297 
504 |a Lindenstrauss, J., On a certain subspace of ℓ1 (1964) Bull. Acad. Pol. Sci., Sr. Sci. Math. Astron. Phys., 12, pp. 539-542 
504 |a Lindenstrauss, J., Tzafriri, L., (1977) Classical Banach Spaces I. Vol. 92, , Springer-Verlag, Berlin, New York 
504 |a Oertel, F., Local properties of accessible injective operator ideals (1998) Czechoslovak Math. J., 48 (123), pp. 119-133 
504 |a Oja, E., Inner and outer inequalities with applications to approximation properties (2011) Trans. Amer. Math. Soc., 363, pp. 5827-5846 
504 |a Oja, E., A remark on the approximation of p-compact operators by finite-rank operators (2012) J. Math. Anal. Appl., 387, pp. 949-952 
504 |a Oja, E., Grothendieck's nuclear operator theorem revisited with an application to p-null sequences (2012) J. Funct. Anal., 263, pp. 2876-2892 
504 |a Pietsch, A., (1980) Operators Ideals, , North-Holland Publishing Company, Amsterdam/New York/Oxford 
504 |a Pietsch, A., The ideal of p-compact operators and its maximal hull (2014) Proc. Amer. Math. Soc., 142, pp. 519-530 
504 |a Piñeiro, C., Delgado, J.M., p-convergent sequences and Banach spaces in which p-compact sets are q-compact (2011) Proc. Amer. Math. Soc., 139, pp. 957-967 
504 |a Ryan, R., (2002) Introduction to Tensor Products on Banach Spaces, , Springer, London 
504 |a Sinha, D.P., Karn, A.K., Compact operators whose adjoints factor trough subspaces of ℓp (2002) Studia Math., 150, pp. 17-33 
504 |a Turco, P., A-compact mappings (2015) Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 110, pp. 863-880 
520 3 |a Let A be a Banach operator ideal and X be a Banach space. We undertake the study of the vector space of A-null sequences of Carl and Stephani on X, c0,A(X), from a unified point of view after we introduce a norm which makes it a Banach space. To give accurate results we consider local versions of the different types of accessibility of Banach operator ideals. We show that in the most common situations, when A is right-accessible for (ℓ1;X),c0,A(X) behaves much alike c0(X). When this is the case we give a geometric tensor product representation of c0,A(X). On the other hand, we show an example where the representation fails. Also, via a trace duality formula, we characterize the dual space of c0,A(X). We apply our results to study some problems related with the KA -approximation property giving a trace condition which is used to solve the remaining case (p=1) of a problem posed by Kim (2015). Namely, we prove that if a dual space has the K1 -approximation property then the space has the Ku,1 -approximation property. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  |l eng 
536 |a Detalles de la financiación: PIP 0483 
536 |a Detalles de la financiación: 1-474, UBACyT, PICT-2015-2299 
536 |a Detalles de la financiación: This project was supported in part by CONICET PIP 0483, ANPCyT PICT-2015-2299 and UBACyT 1-474. The authors would like to thank J.?M.?Kim for sending to them a preliminary and the final version of. Also, the authors are grateful to the referees for their careful reading and suggestions which helped them to improve the presentation of this article. 
593 |a Departamento de Matemática, Universidad de San Andrés, Vito Dumas 284, (B1644BID), Victoria, Buenos Aires, Argentina 
593 |a IMAS – CONICET, Argentina 
593 |a IMAS - UBA - CONICET - Pab I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina 
690 1 0 |a 46B45; SECONDARY: 46B28 
690 1 0 |a 46B50 
690 1 0 |a APPROXIMATION PROPERTIES 
690 1 0 |a COMPACT SETS 
690 1 0 |a NULL SEQUENCES 
690 1 0 |a OPERATOR IDEALS 
690 1 0 |a PRIMARY: 46B04 
700 1 |a Turco, P. 
773 0 |d Wiley-VCH Verlag, 2017  |g v. 290  |h pp. 2308-2321  |k n. 14-15  |p Math. Nachr.  |x 0025584X  |t Mathematische Nachrichten 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017445453&doi=10.1002%2fmana.201600273&partnerID=40&md5=002111fc6a539ae7c4c72a555e612e60  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/mana.201600273  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0025584X_v290_n14-15_p2308_Lassalle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0025584X_v290_n14-15_p2308_Lassalle  |y Registro en la Biblioteca Digital 
961 |a paper_0025584X_v290_n14-15_p2308_Lassalle  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76353