Thermally-induced softening of PNIPAm-based nanopillar arrays

The surface properties of soft nanostructured hydrogels are crucial in the design of responsive materials that can be used as platforms to create adaptive devices. The lower critical solution temperature (LCST) of thermo-responsive hydrogels such as poly(N-isopropylacrylamide) (PNIPAm) can be modifi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sanz, B.
Otros Autores: Von Bilderling, C., Tuninetti, J.S, Pietrasanta, L., Mijangos, C., Longo, G.S, Azzaroni, O., Giussi, J.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Royal Society of Chemistry 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15702caa a22016697a 4500
001 PAPER-15340
003 AR-BaUEN
005 20230518204603.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85016390029 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a SMOAB 
100 1 |a Sanz, B. 
245 1 0 |a Thermally-induced softening of PNIPAm-based nanopillar arrays 
260 |b Royal Society of Chemistry  |c 2017 
270 1 0 |m Giussi, J.M.; Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICETArgentina; email: jmgiussi@inifta.unlp.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Xia, L.-W., Xie, R., Ju, X.-J., Wang, W., Chen, Q., Chu, L.-Y., (2013) Nat. Commun., 4, p. 2226 
504 |a Kahn, J.S., Trifonov, A., Cecconello, A., Guo, W., Fan, C., Willner, I., (2015) Nano Lett., 15 (11), pp. 7773-7778 
504 |a Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P., Aizenberg, J., (2007) Science, 315 (5811), pp. 487-490 
504 |a Sigolaeva, L.V., Gladyr, S.Y., Gelissen, A.P.H., Mergel, O., Pergushov, D.V., Kurochkin, I.N., Plamper, F.A., Richtering, W., (2014) Biomacromolecules, 15 (10), pp. 3735-3745 
504 |a LeMieux, M.C., Peleshanko, S., Anderson, K.D., Tsukruk, V.V., (2007) Langmuir, 23 (1), pp. 265-273 
504 |a Best, J.P., Neubauer, M.P., Javed, S., Dam, H.H., Fery, A., Caruso, F., (2013) Langmuir, 29 (31), pp. 9814-9823 
504 |a Georges, P.C., Janmey, P.A., (2005) J. Appl. Physiol., 98 (4), pp. 1547-1553 
504 |a Best, J.P., Javed, S., Richardson, J.J., Cho, K.L., Kamphuis, M.M.J., Caruso, F., (2013) Soft Matter, 9 (18), p. 4580 
504 |a Kaholek, M., Lee, W.K., Feng, J., Lamattina, B., Dyer, D.J., Zauscher, S., (2006) Chem. Mater., 18 (16), pp. 3660-3664 
504 |a Peng, J., Qi, T., Liao, J., Fan, M., Luo, F., Li, H., Qian, Z., (2012) Nanoscale, 4 (8), p. 2694 
504 |a Yang, J.A., Yeom, J., Hwang, B.W., Hoffman, A.S., Hahn, S.K., (2014) Prog. Polym. Sci., pp. 1-14 
504 |a Ionov, L., (2014) Mater. Today, 17 (10), pp. 494-503 
504 |a Wang, D., Cheng, D., Guan, Y., Zhang, Y., (2011) Biomacromolecules, 12 (3), pp. 578-584 
504 |a Shen, J., Ye, T., Chang, A., Wu, W., Zhou, S., (2012) Soft Matter, pp. 12034-12042 
504 |a Molina, M., Asadian-Birjand, M., Balach, J., Bergueiro, J., Miceli, E., Calderon, M., (2015) Chem. Soc. Rev., 44, pp. 6161-6186 
504 |a Fernandes, P.A.L., Schmidt, S., Zeiser, M., Fery, A., Hellweg, T., (2010) Soft Matter, 6 (15), pp. 3455-3458 
504 |a Forney, B.S., Baguenard, C., Guymon, C.A., (2013) Soft Matter, 9 (31), pp. 7458-7467 
504 |a Kaneko, Y., Nakamura, S., Sakai, K., Kikuchi, A., Aoyagi, T., Sakurai, Y., Okano, T., (1999) J. Biomater. Sci., Polym. Ed., 10 (11), pp. 1079-1091 
504 |a Schmaljohann, D., Oswald, J., Jørgensen, B., Nitschke, M., Beyerlein, D., Werner, C., (2003) Biomacromolecules, 4 (6), pp. 1733-1739 
504 |a Cheng, X., Canavan, H.E., Stein, M.J., Hull, J.R., Kweskin, S.J., Wagner, M.S., Somorjai, G.A., Ratner, B.D., (2005) Langmuir, 21 (17), pp. 7833-7841 
504 |a Schmidt, S., Zeiser, M., Hellweg, T., Duschl, C., Fery, A., Möhwald, H., (2010) Adv. Funct. Mater., 20 (19), pp. 3235-3243 
504 |a Hashmi, S.M., Dufresne, E.R., (2009) Soft Matter, 5 (19), pp. 3682-3688 
504 |a Na, K., Park, J.H., Kim, S.W., Sun, B.K., Woo, D.G., Chung, H.-M., Park, K.-H., (2006) Biomaterials, 27 (35), pp. 5951-5957 
504 |a Bae, Y.H., Vernon, B., Han, C.K., Kim, S.W., (1998) J. Controlled Release, 53 (1-3), pp. 249-258 
504 |a Virtanen, J., Tenhu, H., (2000) Macromolecules, 33 (16), pp. 5970-5975 
504 |a Yoshioka, H., Mikami, M., Mori, Y., Eishun, T., (1994) J. Macromol. Sci., Part A: Pure Appl.Chem., 31 (1), pp. 113-120 
504 |a Berlinova, I.V., Dimitrov, I.V., Vladimirov, N.G., Samichkov, V., Ivanov, Y., (2001) Polymer, 42 (14), pp. 5963-5971 
504 |a Singh, D., Kuckling, D., Koul, V., Choudhary, V., Adler, H.J., Dinda, A.K., (2008) Eur. Polym. J., 44 (9), pp. 2962-2970 
504 |a Liu, W., Zhang, B., Lu, W.W., Li, X., Zhu, D., De Yao, K., Wang, Q., Wang, C., (2004) Biomaterials, 25 (15), pp. 3005-3012 
504 |a Zhang, X.Z., Chu, C.C., (2007) J. Mater. Sci.: Mater. Med., 18 (9), pp. 1771-1779 
504 |a Pollock, J.F., Healy, K.E., (2010) Acta Biomater., 6 (4), pp. 1307-1318 
504 |a Janovák, L., Varga, J., Kemény, L., Dékány, I., (2008) Colloid Polym. Sci., 286 (14-15), pp. 1575-1585 
504 |a Martin, J., Maiz, J., Sacristan, J., Mijangos, C., (2012) Polymer, 53 (6), pp. 1149-1166 
504 |a Noirez, L., Stillings, C., Bardeau, J.-F., Steinhart, M., Schlitt, S., Wendorff, J.H., Pépy, G., (2013) Macromolecules, 46 (12), pp. 4932-4936 
504 |a Knoll, W., Caminade, A.-M., Char, K., Duran, H., Feng, C.L., Gitsas, A., Kim, D.H., Zhong, X.H., (2011) Small, 7 (10), pp. 1384-1391 
504 |a Pulamagatta, B., Yau, M.Y.E., Gunkel, I., Thurn-Albrecht, T., Schröter, K., Pfefferkorn, D., Kressler, J., Binder, W.H., (2011) Adv. Mater., 23 (6), pp. 781-786 
504 |a Perry, J.L., Guo, P., Johnson, S.K., Mukaibo, H., Stewart, J.D., Martin, C.R., (2010) Nanomedicine, 5 (8), pp. 1151-1160 
504 |a Giussi, J.M., Blaszczyk-Lezak, I., Sanz, B., Allegretti, P.E., Mijangos, C., Cortizo, M.S., (2014) Eur. Polym. J., 59, pp. 84-93 
504 |a Sheng, X., Zhang, J., (2009) Langmuir, 25 (12), pp. 6916-6922 
504 |a Duran, H., Steinhart, M., Butt, H.-J., Floudas, G., (2011) Nano Lett., 11 (4), pp. 1671-1675 
504 |a Michell, R.M., Lorenzo, A.T., Müller, A.J., Lin, M.-C., Chen, H.-L., Blaszczyk-Lezak, I., Martin, J., Mijangos, C., (2012) Macromolecules, 45 (3), pp. 1517-1528 
504 |a Blaszczyk-Lezak, I., Maiz, J., Sacristán, J., Mijangos, C., (2011) Ind. Eng. Chem. Res., 50 (18), pp. 10883-10888 
504 |a Giussi, J.M., Blaszczyk-Lezak, I., Cortizo, M.S., Mijangos, C., (2013) Polymer, 54 (26), pp. 6886-6893 
504 |a Salsamendi, M., Ballard, N., Sanz, B., Asua, J.M., Mijangos, C., (2015) RSC Adv., 5 (25), pp. 19220-19228 
504 |a Sapp, B.S.A., Lakshmi, B.B., (1999) Adv. Mater., 11 (5), pp. 402-404 
504 |a Chang, C.-W., Chi, M.-H., Chu, C.-W., Ko, H.-W., Tu, Y.-H., Tsai, C.-C., Chen, J.-T., (2015) RSC Adv., 5 (35), pp. 27443-27448 
504 |a Wang, H.J., Zhou, W.H., Yin, X.F., Zhuang, Z.X., Yang, H.H., Wang, X.R., (2006) J. Am. Chem. Soc., 128 (50), pp. 15954-15955 
504 |a Wang, W.-C., Wang, J., Liao, Y., Zhang, L., Cao, B., Song, G., She, X., (2010) J. Appl. Polym. Sci., 117 (1), pp. 534-541 
504 |a Barbey, R., Lavanant, L., Paripovic, D., Schüwer, N., Sugnaux, C., Tugulu, S., Klok, H.-A., (2009) Chem. Rev., 109 (11), pp. 5437-5527 
504 |a Li, Q., Tang, L., (2014) J. Polym. Sci., Part A: Polym. Chem., 52 (13), pp. 1862-1868 
504 |a Li, Q., Tang, L.-M., Jiao, Y., (2014) Acta Polym. Sin., (8), pp. 1135-1142 
504 |a Li, Q., Tang, L.-M., Liang, Y., (2013) Gaodeng Xuexiao Huaxue Xuebao/Chem. J. Chin. Univ., 34 (6), pp. 1542-1546 
504 |a Li, Q., Tang, L., Xia, Y., Li, B., (2013) Macromol. Rapid Commun., 34 (2), pp. 185-189 
504 |a Md Jani, A.M., Losic, D., Voelcker, N.H., (2013) Prog. Mater. Sci., 58 (5), pp. 636-704 
504 |a Seto, H., Takara, M., Yamashita, C., Murakami, T., Hasegawa, T., Hoshino, Y., Miura, Y., (2012) ACS Appl. Mater. Interfaces, 4 (10), pp. 5125-5133 
504 |a Wang, J., Dai, J., Meng, M., Song, Z., Pan, J., Yan, Y., Li, C., (2014) J. Appl. Polym. Sci., 131, p. 40310 
504 |a Cui, Y., Tao, C., Zheng, S., He, Q., Ai, S., Li, J., (2005) Macromol. Rapid Commun., 26 (19), pp. 1552-1556 
504 |a Li, P.F., Xie, R., Jiang, J.C., Meng, T., Yang, M., Ju, X.J., Yang, L., Chu, L.Y., (2009) J. Membr. Sci., 337 (1-2), pp. 310-317 
504 |a Wei, M., Gao, Y., Serpe, M.J., (2015) J. Mater. Chem. B, 3, pp. 744-747 
504 |a Hutter, J.L., Bechhoefer, J., (1998) Rev. Sci. Instrum., 64, p. 1868 
504 |a Lin, D.C., Dimitriadis, E.K., Horkay, F., (2007) J. Biomech. Eng., 129 (6), pp. 904-912 
504 |a Oliver, W.C., Pharr, G.M., (1992) J. Mater. Res., 7 (6), pp. 1564-1580 
504 |a Plodinec, M., Loparic, M., Monnier, C.A., Obermann, E.C., Zanetti-Dallenbach, R., Oertle, P., Hyotyla, J.T., Schoenenberger, C.-A., (2012) Nat. Nanotechnol., 7 (11), pp. 757-765 
504 |a Hamner, K.L., Maye, M.M., (2013) Langmuir, 29, pp. 15217-15223 
504 |a Hamner, K.L., Alexander, C.M., Coopersmith, K., Reishofer, D., Provenza, C., Maye, M.M., (2013) ACS Nano, 7 (8), pp. 7011-7020 
504 |a Giussi, J.M., Blaszczyk-Lezak, I., Allegretti, P.E., Cortizo, M.S., Mijangos, C., (2013) Polymer, 54 (18), pp. 5050-5057 
504 |a Yamauchi, H., Maeda, Y., (2007) J. Phys. Chem. B, 111 (45), pp. 12964-12968 
504 |a Burmistrova, A., Richter, M., Eisele, M., Üzüm, C., Von Klitzing, R., (2011) Polymers, 3 (4), pp. 1575-1590 
504 |a Sousaa, R.G., Freitas, R.F.S., Welington, M.F., (1998) Polymer, 39 (16), pp. 3815-3819 
504 |a Hess, B., Kutzner, C., Van Der Spoel, D., Lindahl, E., (2008) J. Chem. Theory Comput., 4 (3), pp. 435-447 
504 |a Quesada-Pérez, M., Ramos, J., Forcada, J., Martin-Molina, A., (2012) J. Chem. Phys., 136, p. 244903 
504 |a Kremer, K., Grest, G.S., (1990) J. Chem. Phys., 92 (8), p. 5057 
504 |a Longo, G.S., Olvera, M., Cruz, D., Szleifer, I., (2013) ACS Nano, 7, pp. 2693-2704 
504 |a Ko, H., Zhang, Z., Chueh, Y.L., Saiz, E., Javey, A., (2010) Angew. Chem., Int. Ed., 49 (3), pp. 616-619 
504 |a Yang, J., Hida, M., Mao, S., Zeng, H., Nakajima, H., Uchiyama, K., (2014) Chem. Commun., 50, pp. 10265-10268 
520 3 |a The surface properties of soft nanostructured hydrogels are crucial in the design of responsive materials that can be used as platforms to create adaptive devices. The lower critical solution temperature (LCST) of thermo-responsive hydrogels such as poly(N-isopropylacrylamide) (PNIPAm) can be modified by introducing a hydrophilic monomer to create a wide range of thermo-responsive micro-/nano-structures in a large temperature range. Using surface initiation atom-transfer radical polymerization in synthesized anodized aluminum oxide templates, we designed, fabricated, and characterized thermo-responsive nanopillars based on PNIPAm hydrogels with tunable mechanical properties by incorporating acrylamide monomers (AAm). In addition to their LCST, the incorporation of a hydrophilic entity in the nanopillars based on PNIPAm has abruptly changed the topological and mechanical properties of our system. To gain an insight into the mechanical properties of the nanostructure, its hydrophilic/hydrophobic behavior and topological characteristics, atomic force microscopy, molecular dynamics simulations and water contact angle studies were combined. When changing the nanopillar composition, a significant and opposite variation was observed in their mechanical properties. As temperature increased above the LCST, the stiffness of PNIPAm nanopillars, as expected, did so too, in contrast to the stiffness of PNIPAm-AAm nanopillars that decreased significantly. The molecular dynamics simulations proposed a local molecular rearrangement in our nanosystems at the LCST. The local aggregation of NIPAm segments near the center of the nanopillars displaced the hydrophilic AAm units towards the surface of the structure leading to contact with the aqueous environment. This behavior was confirmed via contact angle measurements below and above the LCST. © The Royal Society of Chemistry.  |l eng 
536 |a Detalles de la financiación: Austrian Institute of Technology, 4947/11, 3911 
536 |a Detalles de la financiación: PICT-2015-0346, PICT-2014-3377 
536 |a Detalles de la financiación: Universidad Nacional de La Plata, UNLP 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT-2010-2554, PICT-2013-0905 
536 |a Detalles de la financiación: Ministerio de Economía y Competitividad, MAT 2014-53437 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: J. T., G. S. L., O. A. and J. M. G. acknowledge the financial support from CONICET, ANPCyT (PICT-2010-2554, PICT-2013-0905), UNLP, Fundaci?n Petruzza and the Austrian Institute of Technology GmbH (AIT-CONICET Partner Group: ?Exploratory Research for Advanced Technologies in Supramolecular Materials Science?-Exp. 4947/11, Res. No. 3911, 28-12-2011). G. S. L. is thankful for the support from ANCyT (PICT-2014-3377). J. M. G. is thankful for the support from ANCyT (PICT-2015-0346). B. Z., C. M, and J. M. G. acknowledge MINECO for its financial support (MAT 2014-53437). The authors would like to thank to D. G?mez for SEM measurements and I. Mu?oz Ochando for Raman measurements. 
593 |a Instituto de Ciencia y Tecnologia de Polimeros, CSIC, Juan de la Cierva 3, Madrid, 28006, Spain 
593 |a Instituto de Fisica de Buenos Aires (IFIBA-CONICET), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina 
593 |a Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata, 1900, Argentina 
593 |a Centro de Microscopias Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina 
690 1 0 |a ACRYLIC MONOMERS 
690 1 0 |a AMIDES 
690 1 0 |a ATOM TRANSFER RADICAL POLYMERIZATION 
690 1 0 |a ATOMIC FORCE MICROSCOPY 
690 1 0 |a CONTACT ANGLE 
690 1 0 |a FREE RADICAL REACTIONS 
690 1 0 |a HYDROGELS 
690 1 0 |a HYDROPHILICITY 
690 1 0 |a MECHANICAL PROPERTIES 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a MONOMERS 
690 1 0 |a NANOSYSTEMS 
690 1 0 |a STIFFNESS 
690 1 0 |a TOPOLOGY 
690 1 0 |a ANODIZED ALUMINUM OXIDE 
690 1 0 |a HYDROPHILIC/HYDROPHOBIC 
690 1 0 |a LOWER CRITICAL SOLUTION TEMPERATURE 
690 1 0 |a MOLECULAR DYNAMICS SIMULATIONS 
690 1 0 |a NANOSTRUCTURED HYDROGELS 
690 1 0 |a POLY(N-ISOPROPYL ACRYLAMIDE) (PNIPAM) 
690 1 0 |a THERMO-RESPONSIVE HYDROGELS 
690 1 0 |a TOPOLOGICAL CHARACTERISTICS 
690 1 0 |a NANOSTRUCTURES 
700 1 |a Von Bilderling, C. 
700 1 |a Tuninetti, J.S. 
700 1 |a Pietrasanta, L. 
700 1 |a Mijangos, C. 
700 1 |a Longo, G.S. 
700 1 |a Azzaroni, O. 
700 1 |a Giussi, J.M. 
773 0 |d Royal Society of Chemistry, 2017  |g v. 13  |h pp. 2453-2464  |k n. 13  |p Soft Matter  |x 1744683X  |w (AR-BaUEN)CENRE-3021  |t Soft Matter 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016390029&doi=10.1039%2fc7sm00206h&partnerID=40&md5=3bb3923f67e482467e3436e7f69a1233  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1039/c7sm00206h  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_1744683X_v13_n13_p2453_Sanz  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1744683X_v13_n13_p2453_Sanz  |y Registro en la Biblioteca Digital 
961 |a paper_1744683X_v13_n13_p2453_Sanz  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76293