Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens

Bacillus amyloliquefaciens PGPBacCA1 was studied regarding its aptitude to protect common bean seeds from their intrinsic pathogens. Also, the inhibition of different environmental phytopathogenic fungi was tested. Two cultivars of Phaseolus vulgaris L. were evaluated: cv. Nag (black bean) and cv. A...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Torres, M.J
Otros Autores: Pérez Brandan, C., Sabaté, D.C, Petroselli, G., Erra-Balsells, R., Audisio, M.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12996caa a22009137a 4500
001 PAPER-15246
003 AR-BaUEN
005 20230518204556.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85003467552 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BCIOE 
100 1 |a Torres, M.J. 
245 1 0 |a Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens 
260 |b Academic Press Inc.  |c 2017 
270 1 0 |m Audisio, M.C.; INIQUI-CONICET (Instituto de Investigaciones para la Industria Química), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, Argentina; email: audisio@unsa.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Alvarez, F., Castro, M., Príncipe, A., Borioli, G., Fischer, S., Mori, G., Jofré, E., The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease (2011) J Appl. Microbiol., 112, pp. 159-174 
504 |a Aranda, F., Teruel, J., Ortiz, A., Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A (2005) Biochim. Biophys. Acta, 1713, pp. 51-56 
504 |a Arrebola, E., Jacobs, R., Korsten, L., Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens (2010) J. Appl. Microbiol., 108, pp. 386-395 
504 |a Babalola, O., Beneficial bacteria of agricultural importance (2010) Biotechnol. Lett., 32, pp. 1559-1570 
504 |a Barret, M., Briand, M., Bonneau, S., Préveaux, A., Valière, S., Bouchez, O., Hunault, G., Jacquesa, M.A., Emergence shapes the structure of the seed microbiota (2015) Appl. Environ. Microbiol., 81, pp. 1257-1266 
504 |a Basurto-Cadena, M.G., Ambrosio, M.I., García-Jiménez, J., Vázquez-Arista, M., Cambios en la estructura celular durante la actividad antagonica de Bacillus subtilis contra Rhizoctonia solani y Fusarium verticillioides (2010) Acta microscópica, 19, pp. 138-144 
504 |a Berg, G., Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture (2009) Appl. Microbiol. Biotech., 84, pp. 11-18 
504 |a Bernheimer, A., Avigad, L., Nature and properties of a cytological agent produced by Bacillus subtilis (1970) J. Gen. Microbiol., 61, pp. 361-369 
504 |a Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., Ongena, M., Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/ amyloliquefaciens (2014) Microb Biotechnol., 8, pp. 281-295 
504 |a Choudhary, D., Johri, B., Interactions of Bacillus spp. and plants – with special reference to induced systemic resistance (ISR) (2009) Microbiol. Res., 164, pp. 493-513 
504 |a Chowdhury, S.P., Hartmann, A., Gao, X., Borriss, R., Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review (2015) Front. Microbiol., 6, p. 780 
504 |a Deleu, M., Paquot, M., Nylander, T., Fengycin interaction with lipid monolayers at the air-aqueous interface – implications for the effect of fengycin on biological membranes (2005) J. Colloid Interface Sci., 283, pp. 358-365 
504 |a Droby, S., Wisniewski, M., Macarisin, D., Wilson, C., Twenty years of postharvest biocontrol research: is it time for new paradigm? (2009) Postharvest Biol. Tec., 52, pp. 137-145 
504 |a Francis, I., Holsters, M., Vereecke, D., The Gram-positive side of plant–microbe interactions (2010) Environ. Microbiol., 12, pp. 1-12 
504 |a García Medina, S., (2002) El cultivo de poroto en la Argentina, , Desimone y Calvo. Gofica Salta, Argentina 
504 |a Grau, A., Gómez Fernández, J.C., Peypoux, F., Ortiz, A., A study on the interactions of surfactin with phospholipid vesicles (1999) Biochim. Biophys. Acta, 1418, pp. 307-319 
504 |a Gray, E.J., Smith, D.L., Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes (2005) Soil Biol. Biochem., 37, pp. 395-412 
504 |a Koumoutsi, A., Chen, X.-H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., Borriss, R., Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42 (2004) J. Bacteriol., 186, pp. 1084-1096 
504 |a Landa, B., Hervas, A., Bettiol, W., Jiménez-Díaz, R., Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f. sp. ciceris (1997) Phytoparasitica, 25, pp. 305-318 
504 |a Li, B., Li, Q., Xu, Z., Zhang, N., Shen, Q., Zhang, R., Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production (2014) Front. Microbiol., 5, pp. 636-651 
504 |a Liu, J., Hagberg, I., Novitsky, L., Hadj-Moussa, H., Tyler, J.A., Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens (2014) Fungal Biol., 118, pp. 855-861 
504 |a Ludueña, L.M., Taurian, T., Tonelli, M.L., Angelini, J.G., Anzuay, M.S., Valetti, L., Munoz, V., Fabra, A., Biocontrol bacterial communities associated with diseased peanut (Arachis hypogaea L.) plants (2012) Eur. J. Soil Biol., 53, pp. 48-55 
504 |a Lugtenberg, B., Kamilova, F., Plant-growth-promoting rhizobacteria (2009) Annu. Rev. Microbiol., 63, pp. 541-556 
504 |a Ongena, M., Jacques, P., Bacillus lipopeptides: versatile weapons for plant disease biocontrol (2008) Trends Microbiol., 16, pp. 116-125 
504 |a Parsa, S., García-Lemos, A.M., Castillo, K., Ortiz, V., Becerra López-Lavalle, L.A., Braun, J., Vega, F.E., Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris (2016) Fungal Biol, 120, pp. 783-790 
504 |a Pérez Brandán, C., Caracterización Y Aspectos Biológicos Y Epidemiológicos De La Podredumbre Carbonosa De La Soja (Macrophomina Phaseolina) Para Contribuir a Su Manejo (2009), p. 191. , Tesis de Magister Scientae Universidad de Buenos Aires Buenos Aires, Argentina; Pérez Brandán, C., Altamirano, F., Torres, N., Arzeno, J.L., Corvalán, E., Evaluation of the germination in black bean with phosphate solubilizator rhizobacterias (2005) Biocell, 29, p. 69 
504 |a Pérez-García, A., Romero, D., de Vicente, A., Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture (2011) Curr. Opin. Biotechnol., 22, pp. 187-193 
504 |a Peypoux, F., Bonmatin, J.M., Wallach, J., Recent trends in the biochemistry of surfactin (1999) Appl. Microbiol. Biotechnol., 51, pp. 553-563 
504 |a Sheppard, J.D., Jumarie, C., Cooper, D.G., Laprade, R., Ionic channels induced by surfactin in planar lipid bilayer membranes (1991) Biochim. Biophys. Acta, 1064, pp. 13-23 
504 |a Souto, G.I., Correa, O.S., Montecchia, M.S., Kerber, N.L., Pucheu, N.L., Bachur, M., Garcia, A.F., Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds (2004) J. Appl. Microbiol., 97, pp. 1247-1256 
504 |a Thimon, L., Peypoux, F., Dana Maget, R., Roux, B., Michel, G., Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis (1992) Biotechnol. Appl. Biochem., 16, pp. 144-151 
504 |a Torres, M.J., Pérez Brandán, C., Petroselli, G., Erra-Balsells, R., Audisio, M.C., Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds (2016) Microbiol. Res., 182, pp. 31-39 
504 |a Torres, M.J., Petroselli, G., Daz, M., Erra-Balsells, R., Audisio, M.C., Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds (2015) World J. Microbiol. Biotechnol., 31, pp. 929-940 
504 |a Wu, L., Wu, H.-J., Qiao, J., Gao, X., Borriss, R., Novel routes for improving biocontrol activity of Bacillus based bioinoculants (2015) Front. Microbiol., 6, p. 1395 
520 3 |a Bacillus amyloliquefaciens PGPBacCA1 was studied regarding its aptitude to protect common bean seeds from their intrinsic pathogens. Also, the inhibition of different environmental phytopathogenic fungi was tested. Two cultivars of Phaseolus vulgaris L. were evaluated: cv. Nag (black bean) and cv. Alubia (white bean). Aspergillus spp., Penicillium spp. and Fusarium spp. constituted the natural fungal biota of both seeds, whereas white bean and black bean also exhibited Cladosporium spp. and Rhizopus spp., respectively. B. amyloliquefaciens PGPBacCA1 prevented the development of the endophytic fungi of black bean, while only Cladosporium spp. survived in the white variety. Growth chamber assays were carried out and bacilli cells were applied on seeds without affecting neither the vigor nor the germination potential of either type of bean. In addition, B. amyloliquefaciens PGPBacCA1, by dual cultures, was able to inhibit the development of the following phytopathogenic fungi: Sclerotium rolfsii (35%), Sclerotinia sclerotiorum (76.5%), Rhizoctonia solani (73%), Fusarium solani (56.5%), and Penicillium spp. (71.5%). The UV-MALDI TOF MS analysis showed that B. amyloliquefaciens PGPBacCA1 co-produces different homologues of the lipopeptides surfactin, iturin and fengycin in the presence of S. sclerotiorum and F. solani. These compounds were identified as the main responsible for the antagonistic effect. SEM analysis confirmed the antifungal effects of the lipopeptides, which also caused damage to chlamydospores and sclerotia of Fusarium and Sclerotinia, respectively. B. amyloliquefaciens PGPBacCA1 can thus be applied to these bean seeds varieties as a potential bioprotection agent. © 2016 Elsevier Inc.  |l eng 
536 |a Detalles de la financiación: Instituto Nacional de Tecnología Agropecuaria, PE-Suelos 1134043 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT2011-0767 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: National Science and Technology Development Agency 
536 |a Detalles de la financiación: The authors would like to thank CIUNSa (PI 1974) and National Science and Technology Promotion Agency (ANPCyT) of Argentina for the financial support (PICT2011-0767) and the collaboration of the INTA PE-Suelos 1134043, directed by Dra. Silvina Vargas Gil. M. C. Audisio, R. Erra-Balsells, G. Petroselli and D. Sabat? are members of the Research Career of CONICET. M. J. Torres is a post-doctoral fellowship of CONICET. 
593 |a Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Av. Bolivia 5150, Salta, 4400, Argentina 
593 |a Instituto Nacional de Tecnología Agropecuaria-Estación Experimental Salta, Ruta Nacional 68 Km 172, Cerrillos, Salta 4403, Argentina 
593 |a CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 3 Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a BACILLUS AMYLOLIQUEFACIENS 
690 1 0 |a FUSARIUM SOLANI 
690 1 0 |a LIPOPEPTIDES 
690 1 0 |a PHASEOLUS VULGARIS L 
690 1 0 |a SCLEROTINIA SCLEROTIORUM 
690 1 0 |a SEED-PROTECTOR 
700 1 |a Pérez Brandan, C. 
700 1 |a Sabaté, D.C. 
700 1 |a Petroselli, G. 
700 1 |a Erra-Balsells, R. 
700 1 |a Audisio, M.C. 
773 0 |d Academic Press Inc., 2017  |g v. 105  |h pp. 93-99  |p Biol. Control  |x 10499644  |w (AR-BaUEN)CENRE-3962  |t Biological Control 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85003467552&doi=10.1016%2fj.biocontrol.2016.12.001&partnerID=40&md5=cf3f4280bc0fdf8166cba65ac6586c65  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.biocontrol.2016.12.001  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10499644_v105_n_p93_Torres  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10499644_v105_n_p93_Torres  |y Registro en la Biblioteca Digital 
961 |a paper_10499644_v105_n_p93_Torres  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76199